Electrons for Neutrinos

Julia Tena Vidal at Tel Aviv University on behalf of the e4nu and CLAS collaborations

Introduction

• Global effort to improve lepton-nucleus scattering models for oscillation experiments

• Unprecedented accuracy in cross section models required by next generation neutrino oscillation experiments

Electrons for neutrinos

- Similar interactions with nuclei
 - CC weak current [vector + axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$
- Almost identical nuclear physics
- Monochromatic beam
- High statistics

High quality constrains for ν/e^- event generators

GENIE http://tunes.genie-mc.org

- ν -A, l^{\pm} -A and h-A event generator
 - MeV to PeV, all targets

Full description for electrons

- Common code for *v*-A, *e*⁻-A processes
- Many models available

Nuclear model Final Sate Interactions (FSI) Quasielastic (QEL) 2p2h (MEC) Resonance (RES) Deep Inelastic (DIS) LFG/RFG/CFG/SF hA/hN/INCL++/G4 (*) Identical for v-codes Rosenbluth/SuSAv2 Empirical/SuSAv2 Berger-Sehgal Bodek-Yang GEM21_11a (SuSAv2), e-12C data

Inclusive measurements

- Most electron-scattering measurements are inclusive
- Exclusive measurements are limited to specific kinematics
- Lacking exclusive hadron production measurements

Hadron production with CLAS6

- Large acceptance @ $\theta_e > 15^\circ$
- ~" 2π " coverage
- Charged particle threshold comparable to neutrino tracking detectors
 - 300 MeV/c for p and γ
 - 150 MeV/c for π^{\pm}
 - Magnetic field disentangles charge
- Beam energies of interest for v:
 - 1.1, 2.2 & 4.4 GeV
- Targets ⁴He, C & Fe
- $\sim 10M C(e,e')$ events

The CLAS12 detector

- Maximal luminosity: $10^{35} cm^{-2} s^{-1}$
 - 10 times larger than CLAS6
- Large acceptance ($\sim 4\pi$)
 - Improved acceptance @ $\theta_e > 5^\circ$
- Detection thresholds:
 - 400 MeV/c for p and n
 - 200 MeV/c for π^{\pm}
 - 300 MeV/c for γ
 - Can detect neutrons
- Open trigger
- Magnetic field

Acquired data:

- Energies: 2, 4, 6 GeV
- **Targets:** H, D, 4He, ¹²C, 4•Ar and more
- ~10⁸ (e,e') ⁴⁰Ar events
 - See backup slides by J.Barrow

https://doi.org/10.1016/j.nima.2020.163419

Inclusive (e,e') at multiple angles and targets

²H at 6GeV

Energy transfer [GeV]

Matan Goldenberg

Inclusive (e,e') at multiple angles and targets

Can choose kinematics to focus on specific reaction mechanisms

Energy transfer [GeV]

Matan

Goldenberg

Inclusive (e,e') at multiple angles and targets $40 \Lambda r$

Pion production dominated era

DUNE will be dominated by pion production events

New precise data crucial to validate and improve models

 $0.3 \le P_{\pi} < 0.6 \text{ GeV}$

Exclusive pion production

• First e4nu electron-scattering pion production analysis: $1p1\pi^{-}$ and $1p1\pi^{+}$

with no detected γ any number of neutrons

- 1.1, 2.2 and 4.4 GeV e2a CLAS6 data
- ¹²C (4He and ⁵⁶Fe to come)
- $1p1\pi^-$: possible at the free nucleon level
- $1p1\pi^+$: needs two or more nucleons \rightarrow undetected particles (FSI!)

$1p1\pi^{\pm}$ analysis: background contamination

- Particles below threshold
 - p_p and $p_{\gamma} > 300 MeV$
 - $p_{\pi^{\pm}} > 150 \; \text{MeV}$

- $\theta_p > 12 \deg$
- $\theta_{\gamma} > 8 deg$
- $\theta_{\pi^{\pm}} > 12 \deg$
- Data not corrected for this
- Same cuts applied to simulation

$1p1\pi^{\pm}$ analysis: background contamination

- Not full " 4π " coverage
 - Gaps between the sectors
 - Gaps within a sector
 - "Data driven" background subtraction
 - Multi-particle correction

C(e,e' $1p\pi^{-}$)

- Shape-only comparison
 - GENIE normalized to data
 - Using GEM21_11a
 - QEL+2p2h: SuSAv2
 - **RES**: Berger-Sehgal
 - SIS+DIS: Bodek-Yang
 - FSI: hA
- Data corrected for bkg. events, $e/p/\pi^{\pm}$ acceptance and detection eff.
 - Not radiative corrected yet
 - Only statistical errors

$C(e,e'_{1}p\pi^{-})$ – Pion momentum

GEM21_11a EMQEL GEM21_11a EMRES Others

GEM21_11a EMMEC

GENIE No FSI

Low momentum protons are not described by MC Sensitive to FSI

C(e,e'ipπ+)- proton momentumGENIE GEM21_11aGEM21_11a EMQELGEM21_11a EMRES P33(1232)GEM21_11a EMRES OthersGEM21_11a EMSISGEM21_11a EMMECGEM21_11a EMDISGENIE No FSI

Good shape description

Beam energy reconstruction

Peak reconstructed if measured particles are full final state Tail due to missing particles, not well described

Proton transparency

- New proton **transparency measurement** on ⁴He, ¹²C and ⁵⁶Fe
 - Probability that a struck proton leaves the nucleus without significant re-scattering
 - Study proton FSI similarly to neutrino scattering
- All previous transparency analysis measure (e,e'p)exp/(e,e'p)_{PWIA}
- Define a more data driven transparency analysis informed by theory

$\mathbf{T}_{\mathbf{A}} = \mathbf{N}(\mathbf{e},\mathbf{e'p})\mathbf{o}\pi / \mathbf{N}(\mathbf{e},\mathbf{e'})_{QE}$

- N(e,e'p)οπ: selected ιpoπ events from CLAS6
 - Background subtracted, radiative, acceptance and efficiency corrections
- **N(e,e')**_{*QE*}: inclusive QEL event rate
 - Use GENIE to determine QE dominated regions

Proton transparency

Proton transparency

- First transparency measurement on 4He
- Transparency flat in pp decreases with A
- Data to MC differences larger at small p_p , grow with A
 - MC very sensitive to nuclear structure models

ation soon.

First 2p and 1n1p knockout analysis

- Selecting 111p or 2p events with no visible pions in the final state
 - 6 GeV on Carbon
 - $N_{(e,e'2p)} \sim 50k, N_{(e,e'1n1p)} \sim 30k$
 - Will repeat analysis:
 - 2, 4 and 6GeV
 - Argon target

2.5

80

26

90

100

Conclusions

- e4nu provides important input for v-A interactions
 - Huge increase in data base for hadron electroproduction
 - New sensitivity to nuclear structure/FSI
 - Significant improvement to event generators
- Many channels available for 1-6 GeV electrons (e.g. carbon, argon)
 - Unprecedented wide kinematic coverage for inclusive scattering
 - New and unique pion-proton coincidence data studies FSI, Δ (1232)
 - New proton transparency data studies FSI and nuclear structure
 - New 1n1p/2p electroproduction gives new sensitivity to reaction mechanisms
 - Many other channels available for new collaborators

PAV Thank you New collaborators are welcome!

e4nu at NuINT24

Backup slides

Angular shape in good agreement with GENIE

GENIE with FSI predicts correct rise

Acceptance correction per sector

Pion production analysis - Raw data

$1p1\pi^{\pm}$ analysis: background contamination

- "Data driven" background subtraction
 - Rotate detected background event N times around \vec{q}
 - Compute probability to be detected as signal (P_{signal})
 - Add pseudo-event weighted by Psignal
 - 1% $\phi_{\vec{p}\cdot\vec{q}}$ -dependence on cross-section

- Calculate the **probability** of the event to be reconstructed as
 - i.e. $2p_{1\pi}$, $1p_{2\pi}$ and $1p_{1\pi}$
 - We add a pseudo-event with **weight** *w* and the new particle content after rotation

$$w = -\frac{N_{mf}}{N_{mi}}w_i$$

- N_{mf} : number of counts with $m_f < m_i$
- *w_i*: initial event weight

- Repeat for lower multiplicity events
 - i.e. $2p_{1\pi}$ and $1p_{2\pi}$
- Calculate the weight for the event to be reconstructed as
 - $1p_{1\pi}$ (our signal definition)

$$w = + \frac{M_{mf'}}{M_{mf}} \frac{N_{mf}}{N_{mi}} w_i$$

• Repeat until we only have signal events

- The method can be easily generalized to any signal definition
- We classify events given their multiplicity:
 - Number of signal particles in the event
- We calculate the weight for every event with $m > m_{signal}$
 - All permutations considered by the algorithm
 - Correct weight assigned to each event
- The initial multiplicity is configurable

(a) Carbon at 1.1 GeV

(b) Carbon at 2.2 GeV

(c) Carbon at 4.4 GeV

Uncorrected data

- Background subtracted - max.mult 3

- Background subtracted - max.mult 4

Correct for detector acceptance

- We must correct the data for detector effects to obtain a **detector**independent cross-section measurement
- We use **MC simulations** to compute the acceptance correction
 - MC simulation without detector effects
 - "True MC"
 - MC simulation with detector effects and no background events
 - "True reconstructed MC"
- We apply an overall per-bin scaling factor to the data:

True MC events ith-bin

 $\alpha_{acc,i} = \frac{1}{True \ Reconstructed \ MC \ events \ ith-bin}$

Detector acceptance maps

Depending on momentum and directionality, we assign an extra MC weight to account for detector acceptance effects E = 1.1 GeV

^(*) Re-used from previous analysis

Radiative corrections

- MC simulation does not account for radiative effects
- We add radiative effects the same way as Jefferson Lab SIMC event generator
 - Data correction factor
- Implementation generalized for all interaction mechanisms

This is ongoing work; it is not included in the results shown in this talk

CLAS12 – acceptance

FD acceptance:

- Polar angle: $5^{\circ} \le \theta \le 35^{\circ}$ (up to 45° in some sub-systems)
- Azimuthal angle: from 50% at $\theta = 5^{\circ}$ to 90% at $\theta = 40^{\circ}$

CD acceptance:

- **Polar angle:** $35^{\circ} \le \theta \le 125^{\circ}$
- Azimuthal angle: full range

Leading FD neutron = the neutron with the highest momentum magnitude in the FD

¹²C simulation at $E_{beam} \simeq 6 \text{ GeV}$

CLAS12 – sub-systems in the FD and CD

Forward Detector (FD):

- High Threshold Cherenkov Counter (HTCC)
- Drift Chambers (DC)
- Low Threshold Cherenkov Counter (LTCC)
- Forward Time-Of-Flight detector (FTOF)
- Ring Imaging Cherenkov detector (RICH)
- Electromagnetic Calorimeters (EC & PCAL)

Central Detector (CD):

- Central Vertex Tracker (CVT)
- Central Time-Of-Flight (CTOF)
- Central Neutron Detector (CND)
- Back Angle Neutron Detector (BAND)

CLAS12 statistics

J.Barrow

Energy (GeV)	Q ² Threshold	Channels with Expected Counts ($ imes 10^{6}$)				
		1pXn0 π^{\pm}	2 p Xn $0\pi^{\pm}$	$1pXn1\pi^{-}$	1pXn2 π^{\pm}	1 p1n0π ±
2.07	~0	~400	~20	~7	~0.6	~100
4.03	~0.1	~90	~20	~3	~0.6	~20
5.99	~0.4	~20	~5	~3	~2	~6

CLAS12 ⁴⁰Ar statistics

Data: Invariant Mass, W, Distributions by Reconstructed Channel

CLAS12 ⁴⁰Ar statistics

J.Barrow

CLAS12 ⁴⁰Ar statistics

J.Barrow

