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test DNN
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▶ inclusive electron-nucleus scattering cross sections from deep-learning analysis
based: Beata Kowal, Graczyk, Ankowski, Banerjee, Prasad, and Sobczyk,

arxiv:2312.17298
→ case study of the DNN techniques
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Laboratory of AI for Physics (LAIP)
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https://kgraczyk.github.io/laip/

▶ AI-NuWro
▶ with Jan, Artur, Beata, Luis, Rwik,

Hemant: financed by National Science
Centre, Poland

▶ PINN - Physics Informed Neural
Network
▶ solving PDFs, Bayesian approach,

with Juszczak and Witkowski
▶ AI-Fluids:

▶ mostly fluid flow in porous media,
with local CFD group lead by Maciek
Matyka

▶ AI-SuGra: Searches for algebra
structures for SuperGravity
▶ with Remik Durka

PAST Bayesian Neural Networks: elastic ep
scattering, TPE, E-M FFs, Proton
Radius, Axial FF (from 2009 to 2018).

Inclusive electron-carbon scattering cross sections from deep-learning analysis K.M.Graczyk 3/26

https://kgraczyk.github.io/laip/


Today’s Goal

▶ Model independent way of predictive inclusive electron-carbon cross-sections.
* Based on the experimental measurements only:

DNN(E, θ, ω) →
d2σ

d cos θdω
(1)

Deep Neural Network (DNN), E = Energy, θ = scattering angle, ω =transfer of
energy

▶ Development techniques that allow us to assess how uncertain are the predictions
of DNN.

▶ Similar work by Al Hammal et al., PRC 107, 065501 (2023)
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Data

▶ Data from http://discovery.phys.
virginia.edu/research/groups/
qes-archive/notes.html

▶ we concentrate on electron-carbon
data (the most informative)

▶ a broad kinematic region: quasielastic
scattering, pion production, and the
onset of deep-inelastic scattering

▶ At the lowest ω, elastic scattering,
and inelastic interactions (with an
excitation of the giant dipole
resonance or a discrete nuclear state)
→ the scarcity of data in this region
→ we remove their contributions by
applying an appropriate cut.
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Data

▶ 11 independent datasets.
▶ the kth dataset containing Nk points

Dk = {(Ei
k, θi

k, ωi
k, dσi

k, ∆dσi
k) : i = 1, . . . , Nk},

where dσi
k and ∆dσi

k are the i-th
measurement in k-th dataset and
corresponding uncertainty.

▶ ∆dσi
k is symmetric: includes statistical and

point-to-point systematic uncertainties.
▶ The normalization, systematic uncertainty, is

taken into consideration.

Abbrev. Number
of points

Arri1995 56
Arri1998 398
Bagd1988 125
Bara1988 259
Barr1983 1243
Dai2018 177
Day1993 316
Fomi2010 359
O‘Con1987 51
Seal1989 250
Whit1974 31
Total 3265
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Basics of Neural Networks

Neuron (Perceptron)

f(sum)

n∑

i=0

wixi
...

...

wnxn

w0
x0 =
1

w2x2

w1x1

inputs weights

▶ Shallow neural network: one, two, hidden
layers,

▶ Deep Neural Networks: representation
learning!?

→ usually many layers neural networks
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DNN: Model A

hidden layer of units
batch nor. layer

▶ 10 blocks, each consists of 300 fully connected units and following batch
normalization layer

▶ Batch Normalization (Ioffe and Szegedy, arxiv:1502.03167): solve (partially) vanishing gradient
problem, improve optimization, regularize “naturally“ the model
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DNN: Model B

hidden layer of units
batch nor. layer

▶ 10 blocks, each consists of 300 fully connected units and following batch
normalization layer

▶ Dropout layer: In every layer, hidden units are dropped from the processing the
signal (forward and backward), with probability p [ Hinton, et al., arXiv:1207.0580.,]

▶ lowers the error on the data test, so it improves generalization
▶ prevents overfitting
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Potential problems

▶ Data in ineffective, for DNN, range domain
→ re-scale the cross-sections

dσ →
(

109

1372E cos(θ/2)
cos(θ/2)2

4E2 sin(θ/2)4

)−1

dσ, (2)

▶ to improve:
(E, ω, θ) → (E, ω, θ, cos θ, Q2)

▶ DNN may over-fit the data
▶ How to get a model with good predictive ability to generalize well?
* Open problem in DL, see Zhang, et al., arXiv:1611.03530, Understanding deep learning requires rethinking

generalization

▶ How uncertain are the predictions?
* Open problem in DL, see Gawlikowski et al., A Survey of Uncertainty in Deep Neural Networks, arXiv:2107.03342
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generalization: bias-variance trade-off

true - predicted

Yes Shrinking DNN weights

Loss → Loss +
α

2

∑
i

w2
i

Yes Batch normalization and training in mini-batch configuration (5 batches)
Yes Dropout (model B)
Yes Data augmentation (model A)
Yes Check the model performance on test data
No Cross-validation techniques: did not work effectively, lack of data
→ we prefer to have more data (in wide kinematical range) in the training dataset
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Uncertainties in DNN predictions

▶ DNN: models with a large
number of parameters

▶ conventional methods might not
work

→ not designed for DNNs
→ numerically inefficient

We follow
▶ Bagging or bootstrap approach (model A)

→ Ensemble methods
▶ MC Dropout (model B)

→ Variational inference
▶ Bayesian methods

see Gawlikowski et al., arXiv:2107.03342
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Model A: bootstrap aggregation or bagging

▶ Efron (1979): bootstrap parametric
and non-parametric

▶ Adapted for neural networks by
Tibshirani (1996) and Breiman
(1996).

→ We consider parametric-like:
i For each data sample, we have a

Gaussian distribution with mean σi
k

and variance ∆σi
k

ii Collect M = 50 bootstrap (clone)
datasets (Tibshirani: M from 25 to
200)

iii For each bootstrap (clone) data set,
obtain DNN fit.

iv Average over the ensemble of models
* Augmentation-like technique

** Averaging over the models prevents
overfitting
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Model B: MC Dropout

Gal and Ghahramani, arXiv:1506.02142 →
approximate Bayesian inference in deep
Gaussian processes
▶ Keep dropout layers active in training

and inference modes!
→ To make prediction:

i compute M = 50 times the response
of the network for a given input.

ii average over the predictions, get the
mean and variance
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Likelihood and Systematic Normalization

χtot =
11∑

k=1

[
χ2

k(λk) +
1
2

(1 − λk

∆λk

)2
]

, χ2
k(λk) =

1
2

Nk∑
i=1

(
dσi

k − λkdσfit
i (Ei

k, θi
k)

∆dσi
k

)2

see D‘Agostini, NIMPR A 346 (1994) 306

▶ elastic ep scattering, see e.g. PRC79 (2009) 065204

▶ CA
5 -axial form factor and consistency of ANL

and BNL data: PRD80 (2009) 093001
▶ DNN tends to lose proper normalization, Graczyk

et al. Self-Normalized Density Map (SNDM) for Counting Microbiological
Obejcts, Sci Rep 12, 10583 (2022)

Abbrev. ∆λk

Arri1995 4.0%
Arri1998 4.0%
Bagd1988 10.0%
Bara1988 3.7%
Barr1983 2.0%
Dai2018 2.2%
Day1993 3.4%
Fomi2010 4.0%
O‘Con1987 5.0%
Seal1989 2.5%
Whit1974 3.0%
▶ λk’s are hyperparameters
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Numerical Analysis

▶ Jax package (in pre-analysis also
Keras@TensorFlow)

▶ AdamW algorithm with decay
width 0.004

▶ Minibatch configuration with five
batches

▶ We split the dataset into training
and test datasets, with a
proportion of 9:1.

▶ Run MC dropout for several p
values
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Histograms: Model A, bagging (top) and Model B, MC dropout (bottom)

On the test data set, dropout p=0.01

−0.4 −0.2 0.0 0.2 0.4
0

5

10

15

20

25

30

35

40

−0.4 −0.2 0.0 0.2 0.4
0

5

10

15

20

25

30

(true-predicted)/true

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

uncertainty/prediction

Inclusive electron-carbon scattering cross sections from deep-learning analysis K.M.Graczyk 17/26



Calibration of MC dropout

Standard Consider MC dropout for various p
value and compute χ2(test)!

▶ Bootstrapping leads to the “poor
man’s Bayes posterior“.

▶ we may expect similar results between
bootstrap and Bayesian approaches

* Efron, Bayesian inference and the parametric bootstrap,

(2012)
▶ Mean[uncertainty/prediction](test

data)
▶ After calibration, we choose MC

dropout with p = 0.01
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Normalization and data consistency

Abbrev. Norm. model A model B
uncert. λk λk(p = 0.01)

Arri1995 4.0% 1.01 1.02
Arri1998 4.0% 1.00 0.96
Bagd1988 10.0% 1.03 1.06
Bara1988 3.7% 1.01 0.98
Barr1983 2.0% 0.99 1.02
Dai2018 2.2% 1.00 0.97
Day1993 3.4% 0.99 0.98
Fomi2010 4.0% 1.01 0.96
O‘Con1987 5.0% 1.02 1.01
Seal1989 2.5% 1.02 1.04
Whit1974 3.0% 0.93 0.93
▶ A tension between Whit1974 and the rest of datasets?
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Results: Model A (bootstrap)
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▶ training and
test points
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Results: Model B (MC dropout)
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▶ training and
test points
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DNN vs. Spectral function
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▶ Model A and model B (p=0.01)
▶ Spectral function QE scattering, Ankowski, Benhar, Sakuda, PRD 91, (2015)

03300
▶ Energy of 600 MeV relevant for neutrino-oscillation experiments such as T2K and

the Short Baseline Neutrino program
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DNN vs. Spectral function

▶ Model A and model B (p=0.04)
▶ Spectral function QE scattering, Ankowski, Benhar, Sakuda, PRD 91, (2015)

03300
▶ Energy of 600 MeV relevant for neutrino-oscillation experiments such as T2K and

the Short Baseline Neutrino program
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Model A vs. Gomez et al.
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▶ data: Gomez et al., PRD 49,
(1994) 4348. (deep inelastic
scattering data)
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Summary

▶ Models reproduce the data well but Model A generalizes better than Model B
▶ Both methods take into account aleatoric (data) and epistemic (model)

uncertainties
▶ When new data arrives then model can be easily tuned!

→ Longitudinal and Transverse components and consider other target
→ DNN model of νA cross sections
* available from https://github.com/bekowal/CarbonElectronNeuralNetwork

AI for NuWro
▶ Starting from data and objective DL tools (not dedicated particularly to the

problem) → cross section model → (the first small step ...)
→ An example of Physics guided Neural Network (PgNN) approach
▶ The theoretical input can be included too: towards Physics encoded Neural

Network (PeNN)
* for review of PgNN, PiNN, PeNN see, Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific

Computing, arXiv:2211.07377
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