Inclusive electron-carbon scattering cross sections from deep-learning analysis

Krzysztof M. Graczyk

Institute for Theoretical Physics University of Wrocław Poland

April 15, 2024

Inclusive electron-carbon scattering cross sections from deep-learning analysis

K.M.Graczyk

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

- inclusive electron-nucleus scattering cross sections from deep-learning analysis
- based: Beata Kowal, Graczyk, Ankowski, Banerjee, Prasad, and Sobczyk, arxiv:2312 17298
 - \rightarrow case study of the DNN techniques

Laboratory of AI for Physics (LAIP)

https://kgraczyk.github.io/laip/

- AI-NuWro
 - with Jan, Artur, Beata, Luis, Rwik, Hemant: financed by National Science Centre, Poland
- PINN Physics Informed Neural Network
 - solving PDFs, Bayesian approach, with Juszczak and Witkowski
- AI-Fluids:
 - mostly fluid flow in porous media, with local CFD group lead by Maciek Matyka
- AI-SuGra: Searches for algebra structures for SuperGravity
 - with Remik Durka
- PAST Bayesian Neural Networks: elastic ep scattering, TPE, E-M FFs, Proton Radius, Axial FF (from 2009 to 2018).

< ロ > < 同 > < 回 > < 回 >

Today's Goal

- Model independent way of predictive inclusive electron-carbon cross-sections.
- * Based on the experimental measurements only:

$$DNN(E, \theta, \omega) \to \frac{d^2\sigma}{d\cos\theta d\omega}$$
 (1)

Deep Neural Network (DNN), E = Energy, $\theta =$ scattering angle, $\omega =$ transfer of energy

- Development techniques that allow us to assess how uncertain are the predictions of DNN.
- Similar work by Al Hammal *et al.*, PRC 107, 065501 (2023)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Data

- Data from http://discovery.phys. virginia.edu/research/groups/ qes-archive/notes.html
- we concentrate on electron-carbon data (the most informative)
- a broad kinematic region: quasielastic scattering, pion production, and the onset of deep-inelastic scattering
- At the lowest ω, elastic scattering, and inelastic interactions (with an excitation of the giant dipole resonance or a discrete nuclear state)
 → the scarcity of data in this region
 → we remove their contributions by applying an appropriate cut.

A D b 4 B b

Data

		Abbrev.	Number
►	11 independent datasets.		of points
	the $k{\rm th}$ dataset containing N_k points	Arri1995	56
		Arri1998	398
	$\mathcal{D}_k = \{ (E_k^i, \theta_k^i, \omega_k^i, d\sigma_k^i, \Delta d\sigma_k^i) : i = 1, \dots, N_k \},\$	Bagd1988	125
		Bara1988	259
	where $d\sigma_i^i$ and $\Delta d\sigma_i^i$ are the <i>i</i> -th	Barr1983	1243
	measurement in k-th dataset and	Dai2018	177
	corresponding uncertainty.	Day1993	316
	$\Delta d\sigma_k^i$ is symmetric: includes statistical and point-to-point systematic uncertainties.	Fomi2010	359
		O'Con1987	51
		Seal1989	250
	The normalization, systematic uncertainty, is	Whit1974	31
	taken into consideration.	Total	3265

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の < ⊙

Basics of Neural Networks

Neuron (Perceptron) x_1 w_1 x_2 w_2 \vdots \vdots $\sum_{i=0}^{n} w_i x_i$ f(sum) x_n w_n f(sum)

- Shallow neural network: one, two, hidden layers,
- Deep Neural Networks: representation learning!?
- $\rightarrow\,$ usually many layers neural networks

イロト 不得 トイヨト イヨト

э

DNN: Model A

- 10 blocks, each consists of 300 fully connected units and following batch normalization layer
- Batch Normalization (loffe and Szegedy, arxiv:1502.03167): solve (partially) vanishing gradient problem, improve optimization, regularize "naturally" the model

Image: A = 1 = 1

DNN: Model B

- 10 blocks, each consists of 300 fully connected units and following batch normalization layer
- Dropout layer: In every layer, hidden units are dropped from the processing the signal (forward and backward), with probability p [Hinton, et al., arXiv:1207.0580.]
- Iowers the error on the data test, so it improves generalization
- prevents overfitting

Potential problems

Data in ineffective, for DNN, range domain

ightarrow re-scale the cross-sections

$$d\sigma \to \left(\frac{10^9}{137^2 E \cos(\theta/2)} \frac{\cos(\theta/2)^2}{4E^2 \sin(\theta/2)^4}\right)^{-1} d\sigma,$$
 (2)

to improve:

$$(E,\omega,\theta) \to (E,\omega,\theta,\cos\theta,Q^2)$$

- DNN may over-fit the data
- How to get a model with good predictive ability to generalize well?
- * Open problem in DL, see Zhang, et al., arXiv:1611.03530, Understanding deep learning requires rethinking generalization
- How uncertain are the predictions?
- * Open problem in DL, see Gawlikowski et al., A Survey of Uncertainty in Deep Neural Networks, arXiv:2107.03342

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬゆ

generalization: bias-variance trade-off

Yes Shrinking DNN weights

$$Loss \to Loss + \frac{\alpha}{2} \sum_{i} w_i^2$$

Yes Batch normalization and training in mini-batch configuration (5 batches)

- Yes Dropout (model B)
- Yes Data augmentation (model A)
- Yes Check the model performance on test data
- No Cross-validation techniques: did not work effectively, lack of data
- \rightarrow we prefer to have more data (in wide kinematical range) in the training dataset

Uncertainties in DNN predictions

- DNN: models with a large number of parameters
- conventional methods might not work
- $\rightarrow\,$ not designed for DNNs
- $\rightarrow\,$ numerically inefficient

We follow

- ▶ Bagging or bootstrap approach (model A) → Ensemble methods
- MC Dropout (model B)
- \rightarrow Variational inference
 - Bayesian methods

see Gawlikowski et al., arXiv:2107.03342

イロト イヨト イヨト ニヨー シック

Model A: bootstrap aggregation or bagging

- Efron (1979): bootstrap parametric and non-parametric
- Adapted for neural networks by Tibshirani (1996) and Breiman (1996).
- $\rightarrow\,$ We consider parametric-like:
 - i For each data sample, we have a Gaussian distribution with mean σ^i_k and variance $\Delta\sigma^i_k$
 - ii Collect M = 50 bootstrap (clone) datasets (Tibshirani: M from 25 to 200)
- iii For each bootstrap (clone) data set, obtain DNN fit.
- iv Average over the ensemble of models
- * Augmentation-like technique
- ** Averaging over the models prevents overfitting

Inclusive electron-carbon scattering cross sections from deep-learning analysis

Model B: MC Dropout

Gal and Ghahramani, arXiv:1506.02142 \rightarrow approximate Bayesian inference in deep Gaussian processes

- Keep dropout layers active in training and inference modes!
- $\rightarrow\,$ To make prediction:
 - i compute M = 50 times the response of the network for a given input.
 - ii average over the predictions, get the mean and variance

Likelihood and Systematic Normalization

$$\chi_{\text{tot}} = \sum_{k=1}^{11} \left[\chi_k^2(\lambda_k) + \frac{1}{2} \left(\frac{1-\lambda_k}{\Delta \lambda_k} \right)^2 \right], \quad \chi_k^2(\lambda_k) = \frac{1}{2} \sum_{i=1}^{N_k} \left(\frac{d\sigma_k^i - \lambda_k d\sigma_i^{\text{fit}}(E_k^i, \theta_k^i)}{\Delta d\sigma_k^i} \right)^2$$

see D'Agostini, NIMPR A 346 (1994) 306

- elastic ep scattering, see e.g. PRC79 (2009) 065204
- C^A₅-axial form factor and consistency of ANL and BNL data: PRD80 (2009) 093001
- DNN tends to lose proper normalization, Graczyk et al. Self-Normalized Density Map (SNDM) for Counting Microbiological Obejcts, Sci Rep 12, 10583 (2022)

Abbrev.	$\Delta \lambda_k$
Arri1995	4.0%
Arri1998	4.0%
Bagd1988	10.0%
Bara1988	3.7%
Barr1983	2.0%
Dai2018	2.2%
Day1993	3.4%
Fomi2010	4.0%
O'Con1987	5.0%
Seal1989	2.5%
Whit1974	3.0%

 \triangleright λ_k 's are hyperparameters

Numerical Analysis

- Jax package (in pre-analysis also Keras@TensorFlow)
- AdamW algorithm with decay width 0.004
- Minibatch configuration with five batches
- We split the dataset into training and test datasets, with a proportion of 9:1.
- Run MC dropout for several p values

Inclusive electron-carbon scattering cross sections from deep-learning analysis

K.M.Graczyk

Histograms: Model A, bagging (top) and Model B, MC dropout (bottom)

On the test data set, dropout p=0.01

Inclusive electron-carbon scattering cross sections from deep-learning analysis

K.M.Graczyk 17/26

Calibration of MC dropout

- Standard Consider MC dropout for various p value and compute $\chi^2(test)!$
 - Bootstrapping leads to the "poor man's Bayes posterior".
 - we may expect similar results between bootstrap and Bayesian approaches

 * Efron, Bayesian inference and the parametric bootstrap, (2012)

- Mean[uncertainty/prediction](test data)
- After calibration, we choose MC dropout with p = 0.01

Normalization and data consistency

Abbrev.	Norm.	model A	model B
	uncert.	λ_k	$\lambda_k (p = 0.01)$
Arri1995	4.0%	1.01	1.02
Arri1998	4.0%	1.00	0.96
Bagd1988	10.0%	1.03	1.06
Bara1988	3.7%	1.01	0.98
Barr1983	2.0%	0.99	1.02
Dai2018	2.2%	1.00	0.97
Day1993	3.4%	0.99	0.98
Fomi2010	4.0%	1.01	0.96
O'Con1987	5.0%	1.02	1.01
Seal1989	2.5%	1.02	1.04
Whit1974	3.0%	0.93	0.93

A tension between Whit1974 and the rest of datasets?

Results: Model A (bootstrap)

training and test points

Inclusive electron-carbon scattering cross sections from deep-learning analysis

K.M.Graczyk

20/26

2

Results: Model B (MC dropout)

Inclusive electron-carbon scattering cross sections from deep-learning analysis

K.M.Graczyk

21/26

æ

DNN vs. Spectral function

- Model A and model B (p=0.01)
- Spectral function QE scattering, Ankowski, Benhar, Sakuda, PRD 91, (2015) 03300
- Energy of 600 MeV relevant for neutrino-oscillation experiments such as T2K and the Short Baseline Neutrino program

イロト イヨト イヨト

DNN vs. Spectral function

- Model A and model B (p=0.04)
- Spectral function QE scattering, Ankowski, Benhar, Sakuda, PRD 91, (2015) 03300
- Energy of 600 MeV relevant for neutrino-oscillation experiments such as T2K and the Short Baseline Neutrino program

イロト イヨト イヨト

Model A vs. Gomez et al.

Inclusive electron-carbon scattering cross sections from deep-learning analysis

Summary

- Models reproduce the data well but Model A generalizes better than Model B
- Both methods take into account aleatoric (data) and epistemic (model) uncertainties
- When new data arrives then model can be easily tuned!
- \rightarrow Longitudinal and Transverse components and consider other target
- $\rightarrow\,$ DNN model of νA cross sections
 - * available from https://github.com/bekowal/CarbonElectronNeuralNetwork

AI for NuWro

- Starting from data and objective DL tools (not dedicated particularly to the problem) → cross section model → (the first small step ...)
- \rightarrow An example of Physics guided Neural Network (PgNN) approach
- The theoretical input can be included too: towards Physics encoded Neural Network (PeNN)

* for review of PgNN, PiNN, PeNN see, Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing, arXiv:2211.07377

イロト イヨト イヨト ニヨー シック

