Charged particles interaction measurements in ProtoDUNE

F. Marinho on behalf of the DUNE collaboration

18/04/2024

Content

- DUNE
- ProtoDUNE
 - Single-Phase prototype description
 - Physics data analysis
- Next prototypes runs
 - Perspectives

DUNE Experiment

- Intense neutrino beam: 1.2 MW \rightarrow 2.4 MW
- Near Detector system including a LAr TPC
- 4 Far Detector LArTPC modules (70 kton total mass)
 - 1300 km source distance, 1,5 km under surface

DUNE Physics

- Precise neutrino oscillations parameters determination
- Detection:
 - Galactic core supernovae neutrinos
 - Solar neutrinos
- Searches:
 - Proton decay ($p \rightarrow K^+ \overline{v}$, $p \rightarrow K^0 \mu^+$, $p \rightarrow K^+ \mu^- \pi^+$)
 - Non standard interactions

DUNE Far Detector (FD)

Far detector modules built in phases. Phase I: First two modules

5

DUNE Far Detector (FD)

- APAs (FD1) and CRPs (FD2)
 - Readout: induction (2) and collection (1) planes
 - High resolution tracking (~mm)
- PDS sensors for timing (T₀ & calorimetry)

6 F. Marinho | Charged particles interaction measurements in ProtoDUNE

ProtoDUNE & NP@CERN

Two Far Detector prototypes

- Engineering and installation procedures
- Validation of LArTPC/PDS technologies
- Long term stability tests
- Charged particles beams at GeV scale

ProtoDUNE & NP@CERN

Two Far Detector prototypes

- Engineering and installation procedures
- Validation of LArTPC/PDS technologies
- Long term stability tests
- Charged particles beams at GeV scale
- Physics goal: Hadron-LAr interactions Analyses on p, π , K & n.

ProtoDUNE Single Phase (SP) : ~700-ton LArTPC

- Large scale test for DUNE Far Detector Module 1 technology
- Two drift chambers: wire readout for anode planes.
- Photon detector system: Arapucas + Acrilic WLS bars
- Beam data (2018) and cosmic data (2018-2020).

ProtoDUNE-SP beam data

Hadron-Ar cross sections in ProtoDUNE-SP

Provide measurements of hadron interactions on LAr

- Neutrino interaction description for DUNE far detector
 - · Final state and secondary interactions of hadrons

Methodology follows the thin-slice method (LArIAT: Phys. Rev. D 106, 052009)

- TPC divided into separate thin detectors
- Division adapted in terms of energy bin (instead of distance)
 - Beam momentum spread for each beam setting
- Cross section is defined by the ratio between interacting and incident hadrons

$\pi^{\scriptscriptstyle +}\text{-}Ar$ exclusive cross sections @ 1GeV/c

- Inelastic interaction events of beam particles categorized as:
 - Absorption (no π s), charge exchange (only π^0) and other (at least 1 π^{\pm})
- Cross-sections obtained with binned likellihood fit
 - Accounts for detector smearing, efficiencies and backgrounds.

π^+ -Ar exclusive cross sections @ 1GeV/c

Proton-Ar inelastic cross section @ 1 GeV/c

• Energy-slice method adopted

 $\frac{1}{\Delta x} = \frac{1}{\Delta E} \frac{dE}{dx}(E)$

- Signal selection (TOF)/~85% purity
- Veto on no interacting protons (E loss)
- Similar amount to secondary protons
 - Background subtraction:
 - good agreement MC and data
- Measured spectrum as "folded" true
- D'Agostini method (iterative Bayesian)
 - Correlations between N_{ini}, N_{end}, N_{int} histograms in single unfolding

Total Kaon⁺-Ar inelastic X-section @6 & 7 GeV/c

- Thin slice method adopted
- X-section extracted via unfolded raw histograms of incident and interacting

DUNE:ProtoDUNE-SP 6 GeV/c Sample: K⁺-Ar Tot. Inel.

Preliminary

5500

Unfolded Kinetic Energy [MeV]

Geant4 v4.10.6 Bertini (χ^2 =11.26)

GENIE v3.2 hA2018 (χ^2 =13.33)

GENIE v3.2 hN2018 (χ^2 =13.82)

• (Bayes-like unfolding)

Data (stat.+syst.)

5000

600

500

400

300

200

4500

s [mbarn]

14 F. Marinho | Charged particles interaction measurements in ProtoDUNE

6000

Conclusions

- Hadron beam data taken in ProtoDUNE-SP for DUNE far detector module 1 (FD1)
- A wealth of cross-section analyses being developed to provide new measurements
 - At advanced stage and should be published soon
- Feedback for simulations/modeling of particle passage through LAr and intranuclear cascade

Conclusions & perspectives

- Next ProtoDUNE data taking campaign
- Horizontal Drift (NP04): spring/summer 2024
 - Final components design for FD1
- More dedicated time on 0.5-2 GeV range
 - $\pi^{\scriptscriptstyle\pm}$ and p LAr full and differential cross-section
- Vertical Drift (NP02): Fill in fall 2024
 - Dedicated to further test FD2 technologies
 - Beam expected in early 2025
 - Measurements and statistics similar to HD
 - are expected

Conclusions & perspectives

- Vertical Drift (NP02): Fill in fall 2024
 - Dedicated to further test FD2 technologies
 - Beam expected in 2025
 - Measurements similar to HD are expected

