Neutron Measurements at MINERVA

Andrew Olivie

April 19, 2024

On Behalf of the MINERvA Collabor

NOTRE DAME | COLLEGE OF SCIENCE

Neutrons and Uncertainties

- Topic: (Anti)neutrino scattering that produces neutrons
- Why study neutron production?
 - Big uncertainties from neutron scattering
 - Handle on other cross sections:
 - CCQE
 - 2p2h

The MINERvA Experiment

- CH tracker in (anti)neutrino beam
- Matched data with magnetized tracker: MINOS near detector
- See Dan Ruterbories' talk on Tuesday after lunch

MINERvA's Neutron Measurements WNOTRE DAME

- One past measurement:
 - Neutron production: Phys. Rev. D 100, 052002 (2019)
- Two recent measurements:
 - Charged-current elastic (CCE) on hydrogen: Nature 614 (2023) 7946, 48-53
 - Multi-neutron at low E_{available}: Phys. Rev. D 108 (2023) 11, 112010
- One upcoming measurement: QE-like on targets with 1+ neutrons: poster session

What Neutrons Look Like in MINERvA

5

- Muon
- Neutron
- **Prompt** scattering → relative directions

Nature 614 (2023) 7946, 48-53

- Showed that neutrino experiment tracker can see neutrons!
- Neutron modeling close, but not quite right
- No conclusive evidence whether problem is at GEANT- or GENIE-level

Neutron Cross Sections from Nuclear Physics

MENATE_R: Data-Driven Neutron Transport

- MENATE_R is a neutron transport simulation driven by nuclear physics cross sections
- MoNA measured neutron multiplicity and compared MENATE_R to GEANT
- MENATE_R much closer to data
- Built MINERvA uncertainty from this

Free Nucleon Measurement: Charged Current Elastic Scattering

NOTRE DAME

- "Form factors": parameters in cross section expression
 - F_V⁻¹, F_V⁻²: "vector" form factors from E&M. Can be probed by electron scattering
 - F_A: "axial" form
 factor for weak
 force. Only
 dominant for e.g.
 neutrino
 scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} \begin{pmatrix} \nu n \to l^- p \\ \bar{\nu}p \to l^+ n \end{pmatrix} = \frac{M^2 G_{\mathrm{F}}^2 \cos^2 \theta_c}{8\pi E_{\nu}^2} \left[A(Q^2) \mp B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right]$$

$$\begin{split} A(Q^2) &= \frac{m^2 + Q^2}{4M^2} \bigg[\left(4 + \frac{Q^2}{M^2} \right) |\mathbf{F}_{\mathbf{A}}|^2 - \left(4 - \frac{Q^2}{M^2} \right) |\mathbf{F}_{\mathbf{V}}^{\mathbf{1}}|^2 \\ &+ \frac{Q^2}{M^2} \left(1 - \frac{Q^2}{4M^2} \right) |\boldsymbol{\xi} \mathbf{F}_{\mathbf{V}}^{\mathbf{2}}|^2 + \frac{4Q^2}{M^2} \operatorname{Re} \mathbf{F}_{\mathbf{V}}^{\mathbf{1*}} \boldsymbol{\xi} \mathbf{F}_{\mathbf{V}}^{\mathbf{2}} + \mathcal{O}\left(\frac{m^2}{M^2} \right) \bigg] \\ B(Q^2) &= \frac{Q^2}{M^2} \operatorname{Re} \mathbf{F}_{\mathbf{A}}^{\mathbf{*}} (\mathbf{F}_{\mathbf{V}}^{\mathbf{1}} + \boldsymbol{\xi} \mathbf{F}_{\mathbf{V}}^{\mathbf{2}}), \\ C(Q^2) &= \frac{1}{4} \left(|\mathbf{F}_{\mathbf{A}}|^2 + |\mathbf{F}_{\mathbf{V}}^{\mathbf{1}}|^2 + \frac{Q^2}{4M^2} |\boldsymbol{\xi} \mathbf{F}_{\mathbf{V}}^{\mathbf{2}}|^2 \right) \end{split}$$

- Electron experiments can measure some parts...
- Axial-vector form factor only affects weak force.
 Neutrinos isolate it

Different from CCQE Because of FSI UNIVERSITY

- Pions, protons, etc. scatter in nuclear medium!
 - Could gain/lose momentum
 - Could produce more hadrons
 - Could be absorbed
- None of this visible to detector!
- Cascade simulation state of the art for neutrinos

Transverse Kinematic Imbalance

- Conservation of momentum
- Assume antineutrino direction is beam direction
- If striking stationary free nucleon, sum of muon and neutron momenta is in beam direction
- Assumption NOT true for carbon:
 - "Fermi momentum": nucleons moving inside nucleus
 - Many-body physics
- If neutron and muon "line up", very likely to be hydrogen

Background Constraint

- Nuclear many-body physics of carbon not necessarily well modeled
- Cross-check: plot deviation from momentum-conserving angles
- Also separates background-rich regions from signal-rich regions $\ \ \rightarrow \ \ background$ constraint

Result: Hydrogen CCE Cross Section

- Prediction for cross section that depends on form factors
- Binned in Q²: four-momentum transfer
- Corrected for:
 - Constrained backgrounds
 - Smearing
 - Detector efficiency
 - Flux
 - Number of hydrogen atoms in detector

Result: Axial Form Factor

- Large uncertainty: ~5800 events on a background of ~12500
- Deuterium fit is based on decades-old measurements
 - Low statistics
 - Nuclear effects interfere
- BBBA2007 is global fit including electron scattering
- LQCD fit gets close at high Q²: *Phys. Lett. B* 824, 136821 (2022).

Compatibility with Deuterium Data?

- Joint fit of MINERvA FA results with *Phys. Rev. D* 93 (2016) 11, 113015
- With BBBA05 vector form factors and Q² > 0.2 GeV², δX² ~ 5.5 or p-value of 2%

- Deuterium dipole and joint fit not compatible with hydrogen data
- See Aaron Meyer's talk 14

Multi-Neutron Cross Section

- Where we can make measurement:
 - Available energy < 100 MeV → fewer backgrounds, more QElike
 - 2 or more neutrons with KE > 10 MeV each
- Lots of 2p2h
- FSI introduces other processes

Backgrounds

Constraint Results

Comparison with Tuned GENIE

- MnvTunev1 overpredicts
- No model falls off at high transverse momentum like measurement does
- Measurement uncertainties are smaller than difference between leading models 18

MnvTunev1

- Reweights on top of GENIE 2.12.6
- MnvTunev1
 - 2p2h enhancement
 - RPA modification
 - Non-resonant pion suppression
- 2p2h enhancement motivated by multiple LE measurements

- All GENIE v3 models closer to measurement than MnvTunev1
- Valencia models closer than empirical 2p2h
- Most models fall off at high $p_{\scriptscriptstyle T}$ like measurement

- Two 2p2h models: Valencia and Dytman's empirical tuning
- Two FSI models: single-step (hA) and multi-step (hN)

Future: Neutrons in Nuclear Targets

- Neutron production by QElike in nuclear targets
- With tagged neutron
- CH and water in same detector

Future: Neutrons in Nuclear Targets

Thank You

Backup Slides

Neutrino Beam at MINERvA

- NuMI beam at Fermilab
- 6 GeV neutrino energy peak
- Using exclusively Medium Energy (ME) results today
- Flux constrained by neutrinoelectron elastic scattering and inverse muon decay

MINERvA's Tracker

- Segmented scintillator tracker
- 3cm x 1.7cm triangular strips
- 3 orientations \rightarrow 3D track reconstruction
- Good position resolution; great timing

- Look for charged particle activity isolated from the (anti)muon
- Stitch one-view pockets of charge (clusters) into 2D seeds
- Combine 2D seeds that match seeds from other views

 $k_{\rm max}$

Fit for Form Factor

- Fit across all bins because cross section not linear in F_A
- Fit z-expansion formalism for form factor as in Phys.Rev.D 93 (2016) 11, 113015

$$F_{A}(Q^{2}) = \sum_{k=0}^{\infty} a_{k} z^{k}$$

$$z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} - t_{0}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} - t_{0}}}$$

$$\sum_{k=n}^{\infty} k(k-1) \dots (k-n+1)a_{k} = 0, n \in (0, 1, 2, 3)$$

$$\chi^{2} = \Delta X \cdot \text{cov}^{-1} \cdot \Delta X + \lambda \left[\sum_{k=1}^{5} \left(\frac{a_{k}}{5a_{0}}\right)^{2} + \sum_{k=5}^{k_{\text{max}}} \left(\frac{ka_{k}}{25a_{0}}\right)^{2}\right]$$

• Regularized by L-curve

- MoNA nuclear physics collaboration also wanted to model neutrons on CH
- Compared to MENATE_R model
- Test beam data favors MENATE_R over GEANT 4.9.2

- Study nuisance variables like candidate energy deposit
- Reweight MINERvA MC to look like MENATE_R simulation
- X² goes from ~288 to ~254

Nature 614, 48–53 (2023).

Cross Section Uncertainties

- Dominated by statistical uncertainty
- Model uncertainties controlled by background constraint
- "Others" driven by neutron uncertainty

Nature 614 (2023) 7946, 48-53

- Electron scattering experiments saw another interaction mode
- Nucleons pair up in nucleus: short range correlations
- Most common pair is neutronproton: 2p2h interaction
 - Often looks like "CCQE"
 - But target mass different
 - → biased energy reconstruction
- Overlaps with CCQE and resonance production phase space
 → hard to measure

Multi-Neutron Uncertainties

Phys. Rev. D 108 (2023) 11, 112010

- Statistical uncertainty
 very small because
 ME era has 7x
 protons on target
 from LE era!
- "Initial state models" includes 2p2h model uncertainties
 - "GEANT" dominated by MENATE_R reweight

Multi-Neutron Unfolding

- MINERvA has great resolution for p_{Tµ}
- d'Agostini iterative unfolding
- Chose 3 iterations

Multi-Neutron Efficiency

- Estimated by MC simulation
- Generally flat, especially at peak of event rate
- Gradual drop at high p_T driven by muon angular acceptance