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Expanding the Definition of Shallow Inelastic Scattering
Q2 the most important variable
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Expanding the Definition of Shallow Inelastic Scattering
Introduce W
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As Q2  Increases
   Resonance
         SIS
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Experimental 
DIS  Region

W = 3. 
5 G

eV

W = 3. 
5 G

eV

Mainly resonant and non-resonant production

As W increases 
Resonance decrease

! Use W cuts to limit resonant production and, with Q2 cuts, give a range of x.
! Corresponding range of x gives probability of finding single quark for scattering



How do we study the SIS region between safe DIS 
and the resonance region?
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5: Safe DIS region  (W>3.5 GeV, Q2 > 4 GeV2)

4 GeV2

! SIS non-perturbative multiquark (1/Q2) effects. 
! SAFE DIS (red region) for (nCTEQ) Global pQCD fits for PDFs.
! ≤ 2 % of MINERvA ME Q2 > 1 GeV2 events are in  the SAFE DIS region
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5 G
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W = 1.5
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Q2 and/or W increases
Decreasing resonances

Hold W constant, increase Q
x increases, find a quark decreases

Hold higher Q constant, increase W
x decreases, find a quark increases

x = 0.74

SIS Multiquark Region 
                nPQCD

Mainly resonant and non-resonant production

Safe - pQCD
DIS  Region
Q2 > 4 GeV2

W > 3.5 GeV



How do we explore the SAFE DIS       Resonance  Transition!
Possibility 1: Quark – Hadron Duality

! Quark–hadron duality is a general feature of strongly interacting 
landscape:
! How does the physics (language) of quark/gluons from DIS meet the physics of 

nucleons/mesons (pions) of SIS  à quark-hadron duality.

! Quark-hadron duality originally studied/confirmed in e-N scattering. 

! In general, for n, the resonance structure functions for proton are 
much larger than for neutrons and in the case of DIS structure 
functions the situation is opposite. 

! No general agreement on how to apply duality to n interactions 
off nucleons / nuclei.  Details in the Backup.

!       The alternative - consider the physics of the 
       non-perturbative QCD Region 5



Language of non-perturbative QCD        
 

For smaller Q2  and/or larger xBj, we need to include M2x2/ Q2 corrections to the 
perturbative theory. Often characterized as “1 / Q2 effects“ 

! Target Mass Correction – kinematic corrections due to non-negligible mass of 
targets.     Applied to the theory!

! TMCs were calculated by Nachtmann yielding the “Nachtmann Variable”. This is only 
a first (but significant) step toward the  full TMC expression:

                          when M2/Q2 → 0 , TMCs vanish, x à x !

! Higher Twist – Dynamic corrections to perturbative DIS processes for non-
perturbative multiquark/parton interactions (parton-parton  correlations) and are 
mainly extracted experimentally!     NO systematic theoretical approach!

! HT effects are extracted experimentally by fitting data to a pQCD + HT: 
 

                                           F2(x, Q2) = F2
pQCD(x, Q2) [ 1 + CHT(x) / Q2 ]
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Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

ξB =
Q2 +

q

Q4 + 4m2
qQ2

2mNν(1+
p

1+Q2/ν2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable ξ

ξ = lim
mq→0

ξB =
2Q2/2mNν

(1+
p

1+Q2/ν2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding ξ in powers of 1/Q2 at high Q2 gives the variable 2mNν+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
ξ
≈
1
x

„

1+
m2
Nx2
Q2

«

=
2mNν +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get ξ ≈ 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)
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Target Mass Corrections
! Start:  familiar x = Q2 / 2 M u  (target rest frame) 

! this is fraction of the target momentum carried by the interacting parton – right?  
   Well, only for Q2 → ∞ limit!

! At finite Q2, the effects of the target (and quark) masses modify the identification 
of x with the momentum fraction. 
! The parton momentum fraction (for massless quarks) is then the Nachtmann variable ξ .

! More than a few theorists think the 
      Nachtmann variable, not x, is the natural 
      scaling variable when M/Q is not close to zero!

! To study TMC:
For nucleons see I. Schienbein et al . 0709.1775 [hep-ph] (2007)

7
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Figure 1. The basic deep inelastic lepton–nucleon scattering process, !(k) + N(P ) →
!′(k′) + X(PX).

P is the target nucleon momentum, and PX is the momentum of the final hadronic
state X. We define q = k − k′ to be the four-momentum transfered from the lepton

to the nucleon, with Q2 ≡ −q2. The energies of the initial and final leptons are

denoted by E and E ′, respectively. Our notation reserves M for the target nucleon

mass, P 2 = M2, and the invariant mass squared of the final hadronic state is given by

P 2
X = W 2 = (P + q)2 = M2 + 2P · q − Q2 (see also Appendix A).

For electromagnetic or weak neutral current (NC) scattering, the vector boson (V )–
nucleon subprocess is V (q) + N(P ) → X(PX), where V = γ, Z0. The corresponding

charged current (CC) process, which is important in neutrino–hadron scattering,

ν(k) + N(p) → #(k′) + X(PX), where V = W±, will be discussed in Sec. 3, where

we discuss the correspondence with the parton model.

In addition to the virtuality of the exchanged boson, Q2, inelastic scattering is also

characterized by the Bjorken scaling variable x, where

x =
Q2

2P · q
. (1)

In the massless target and quark limits (or equivalently in the Q2 → ∞ limit), x is

equivalent to the light-cone momentum fraction of the target carried by the interacting

parton. In the target rest frame, the Bjorken variable can be written x = Q2/2Mν,

where ν = E − E ′ is the energy transfered to the hadronic system, and we define the

inelasticity of the process by y = ν/E. For convenience, we also introduce the variable

r to denote a frequently appearing combination of factors:

r =

√

1 +
4x2M2

Q2
≡

√

1 +
Q2

ν2
.

At finite Q2, the effects of the target (and quark) masses modify the identification

of the Bjorken x variable with the light-cone momentum fraction. In this case the parton

light-cone fraction (for massless quarks) is given by the Nachtmann variable ξ [33],

ξ =
2x

1 +
√

1 + 4x2M2/Q2
, (2)

Progress in Particle and Nuclear Physics 136 (2024) 104096
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Fig. 2.1. (a) The Nachtmann scaling variable ⇠A(xA ,Q) as a function of the Bjorken scaling variable xA for a selection of Q values [GeV], as indicated in
the legend, with MA = Mproton (b) Same as (a) but for large xA. We observe the that for large xA and small Q values, the target mass MA modifies the true
(Nachtmann) scaling variable ⇠A relative to the usual Bjorken scaling variable xA, c.f., Ref. [73].

variable yA À [0, 1] should not be confused with the rapidity or pseudorapidity variables y, ⌘ À [*ÿ,ÿ] which measure of a particle’s
direction.)

For later use with TMCs to structure functions (Sections 4 and 3.3), we also define the quantity

rA =
t

1 + 4x2AM
2
A_Q

2 = 1 +
2x2AM

2
A

Q2 + O

H

4x4AM
4
A

Q4

I

, (2.3)

as well as the so-called Nachtmann scaling variable [78]

⇠A = 2
1 + rA

xA í RMxA , where RM = 2
1 + rA

. (2.4)

RM is the target-mass-dependent factor relating the Bjorken scaling variable xA to the Nachtmann scaling variable ⇠A. In other
words, ⇠A is the true scaling variable in DIS when one accounts for the mass of the hadronic target [58,59]. The ‘‘M ’’ subscript of
RM indicates this quantity depends on the hadron massMA. In the limit that (MA_Q) ô 0 or that xA ô 0, we have rA ô 1, RM ô 1,
and ⇠A ô xA since:

⇠A = xA

L

1 *
x2AM

2
A

Q2 + O

H

x4AM
4
A

Q4

IM

. (2.5)

We see in Eq. (2.5) that the Nachtmann variable ⇠A is essentially the Bjorken scaling xA modified by the target mass MA. The rA
and RM factors are ultimately kinematical in origin [this is shown below Eq. (A.122) in Appendix A.5] and take into account that
MA is non-zero. For example: in the rest frame of A, the energy of the time-like exchange boson V is q0lab = Q2_(2xAMA) and its
speed is �q = íq_q0lab = rA.

Qualitatively, the RM factor indicates that (slightly) less 3-momentum is available than suggested by xA and simplified arguments
based purely on energy conservation. In other words, the leading kinematics in DIS are modified by O(xAM2

A_Q
2) terms that can

be neglected at high momentum-transfers. As discussed and demonstrated in later chapters of this work, this is often remedied in
practice by the appropriate substitution of xA with ⇠A. Quantitatively, the difference between ⇠A and xA is illustrated in Fig. 2.1,
where ⇠A is plotted as a function of xA for a selection of exchange-boson virtualities Q with MA = Mproton. Fig. 2.1(a) displays the
full {⇠A, xA} plane. Fig. 2.1(b) highlights the large x region, where the difference between ⇠A and xA is more pronounced. Overall,
xA and ⇠A are mostly indistinguishable for xA ø 0.4*0.5 over a large range of Q andMA. At around xA = 0.8, one has approximately
⇠A ˘ 0.63 (0.71) [0.76] for Q = 1.3 (2) [3] GeV. For the same Q values, one has approximately ⇠A ˘ 0.76 (0.78) [0.84] at around xA = 0.9.

2.2. Leptonic and hadronic tensors in DIS from experimentally observable kinematics

Deep-inelastic scattering is a powerful, elucidating probe of the internal structure of nucleons and nuclei, i.e., hadrons. This ability
stems from the fact that under strong but general assumptions one can write the cross section for any sufficiently inclusive DIS process
l1 + A

V
,,,,,,,,ô l2 +X as a combination of: (a) leptonic and hadronic kinematics, which can be measured, and (b) hadronic structure

functions, which parameterize the internal dynamics of A. This discussion is based solely on kinematics and symmetries, including
Lorentz symmetry. The only approximation of consequence that is made when constructing structure functions from experimentally
observable kinematics is the one where DIS is mediated by the exchange of only one electroweak boson. (Relaxing this has been

Q

https://arxiv.org/abs/0709.1775


TMC for nucleons and nuclei- recent nCTEQ publication
2301.07715 [hep-ph]] (2023)

! Brief outline of one type of derivation using two moments of structure 
functions, the Cornwall-Norton and Nachtmann moments in backup. 
! Nachtmann moments already take into account finite M2/Q2 corrections 8
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Today’s talk
A few highlights from a “short" ! study on Target Mass Corrections
(TMCs) (more in a bit!) in deeply inelastic scattering (DIS) off nuclear targets

w/ Olness, Muzakka, Leger, Schienbein, et al (nCTEQ Collaboration) [2301.07715]

R. Ruiz (IFJ PAN) nTMCs – AGH 3 / 52

https://arxiv.org/abs/2301.07715


Example: Full TMC for Structure Functions

! After considerable applied theory/math the “Master Formula” for the target mass 
corrected structure functions is given by the TMC expansion:

!                                       Fi
0 in limit M/Q à 0  = Fi

0 (x, Q2) no TMC.

! The fully TMC corrected structure functions are then

" Acceptable, much less complicated, approximations in Backup
 9
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Using Eqs. (4) and (6), one can explicitly relate the Cornwall-Norton moments

Mn
i (Q2) of the FTMC

i structure functions to sums of reduced matrix elements [34, 50].

For the FTMC
2 structure function, for example, one has:

Mn
2 (Q2) =

∫ 1

0
dx xn−2FTMC

2 (x, Q2)

=
∞∑

j=0

(
M2

Q2

)j
(n + j)!

j!(n − 2)!

Cn+2j
2 An+2j

(n + 2j)(n + 2j − 1)
. (10)

Defining F (0)
i to be the massless nucleon limits of the structure functions FTMC

i , we can
relate the reduced matrix elements in Eq. (10) to the Cornwall-Norton moments of F (0)

i :

Cn+2j
2 An+2j ≡

∫ 1

0
dy yn+2j−2F (0)

2 (y) , (11)

Cn+2j
i An+2j ≡

∫ 1

0
dy yn+2j−1F (0)

i (y) , i = 1, 3 . (12)

In other words, the functions FTMC
i contain target mass effects, whereas the F (0)

i do

not. The Cornwall-Norton moments of these functions can be inverted to yield a set
of “master equations” for the target mass corrected DIS structure functions, which we

discuss next.

2.2. Master Equations

Combining the results in the previous section, the full, target mass corrected structure

functions can be related to the massless limit functions by the following “master
formula”, using the notation of Kretzer & Reno (see Eq. (3.17) of Ref. [42], with their

ρ → r):

FTMC
j (x, Q2) =

5∑

i=1

Ai
jF

(0)
i (ξ, Q2) + Bi

jhi(ξ, Q
2) + Cjg2(ξ, Q

2) , j = 1 − 5 .

(13)

where ξ is the Nachtmann scaling variable from Eq. (2) [33]. Inserting the coefficients

Ai
j , Bi

j , Cj given in Tables I,II and III of Ref. [42], one finds for the first three structure

functions:

FTMC
1 (x, Q2) =

x

ξr
F (0)

1 (ξ) +
M2x2

Q2r2
h2(ξ) +

2M4x3

Q4r3
g2(ξ) , (14)

FTMC
2 (x, Q2) =

x2

ξ2r3
F (0)

2 (ξ) +
6M2x3

Q2r4
h2(ξ) +

12M4x4

Q4r5
g2(ξ) , (15)

FTMC
3 (x, Q2) =

x

ξr2
F (0)

3 (ξ) +
2M2x2

Q2r3
h3(ξ) + 0 . (16)

The functions hi(ξ, Q2) and g2(ξ, Q2) are given by [42]:

h1(ξ, Q
2) =

∫ 1

ξ
du

2F (0)
1 (u, Q2)

u
, (17)

h2(ξ, Q
2) =

∫ 1

ξ
du

F (0)
2 (u, Q2)

u2
, (18)
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Figure 1. The basic deep inelastic lepton–nucleon scattering process, !(k) + N(P ) →
!′(k′) + X(PX).

P is the target nucleon momentum, and PX is the momentum of the final hadronic
state X. We define q = k − k′ to be the four-momentum transfered from the lepton

to the nucleon, with Q2 ≡ −q2. The energies of the initial and final leptons are

denoted by E and E ′, respectively. Our notation reserves M for the target nucleon

mass, P 2 = M2, and the invariant mass squared of the final hadronic state is given by

P 2
X = W 2 = (P + q)2 = M2 + 2P · q − Q2 (see also Appendix A).

For electromagnetic or weak neutral current (NC) scattering, the vector boson (V )–
nucleon subprocess is V (q) + N(P ) → X(PX), where V = γ, Z0. The corresponding

charged current (CC) process, which is important in neutrino–hadron scattering,

ν(k) + N(p) → #(k′) + X(PX), where V = W±, will be discussed in Sec. 3, where

we discuss the correspondence with the parton model.

In addition to the virtuality of the exchanged boson, Q2, inelastic scattering is also

characterized by the Bjorken scaling variable x, where

x =
Q2

2P · q
. (1)

In the massless target and quark limits (or equivalently in the Q2 → ∞ limit), x is

equivalent to the light-cone momentum fraction of the target carried by the interacting

parton. In the target rest frame, the Bjorken variable can be written x = Q2/2Mν,

where ν = E − E ′ is the energy transfered to the hadronic system, and we define the

inelasticity of the process by y = ν/E. For convenience, we also introduce the variable

r to denote a frequently appearing combination of factors:

r =

√

1 +
4x2M2

Q2
≡

√

1 +
Q2

ν2
.

At finite Q2, the effects of the target (and quark) masses modify the identification

of the Bjorken x variable with the light-cone momentum fraction. In this case the parton

light-cone fraction (for massless quarks) is given by the Nachtmann variable ξ [33],

ξ =
2x

1 +
√

1 + 4x2M2/Q2
, (2)
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neutrino and antineutrino DIS on an arbitrary nuclear target (A), where A may also be just a proton, the charged current structure
functions (FW ±

i ) and PDFs are related by:

F ⌫A
1 = (d + s + Ñu + Ñc), F Ñ⌫A

1 = (u + c + Ñd + Ñs), (7.1a)

F ⌫A
2 = 2x (d + s + Ñu + Ñc) , F Ñ⌫A

2 = 2x
�

u + c + Ñd + Ñs
�

, (7.1b)

F ⌫A
3 = +2 (d + s * Ñu * Ñc) , F Ñ⌫A

3 = *2
�

u + c * Ñd * Ñs
�

, (7.1c)

in the limit of four quarks. Here {u, d,…} are the PDFs of a full nucleus A. Likewise, when the exchange of Z bosons can be neglected
in charged lepton DIS, the neutral current structure functions (F �

i ) are related to PDFs at LO by

F l±A
2 = x1
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While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
mass contributions; specifically, we use the S-ACOT(�) scheme [147].

Since we will compare separate components of the TMC contributions, to reduce ambiguity we introduce the nomenclature which
we will use throughout our presentation. Schematically, the OPE TMC terms are related as follows:
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
mass contributions; specifically, we use the S-ACOT(�) scheme [147].

Since we will compare separate components of the TMC contributions, to reduce ambiguity we introduce the nomenclature which
we will use throughout our presentation. Schematically, the OPE TMC terms are related as follows:
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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neutrino and antineutrino DIS on an arbitrary nuclear target (A), where A may also be just a proton, the charged current structure
functions (FW ±

i ) and PDFs are related by:
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in the limit of four quarks. Here {u, d,…} are the PDFs of a full nucleus A. Likewise, when the exchange of Z bosons can be neglected
in charged lepton DIS, the neutral current structure functions (F �

i ) are related to PDFs at LO by

F l±A
2 = x1
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While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
mass contributions; specifically, we use the S-ACOT(�) scheme [147].

Since we will compare separate components of the TMC contributions, to reduce ambiguity we introduce the nomenclature which
we will use throughout our presentation. Schematically, the OPE TMC terms are related as follows:
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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functions (FW ±
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in the limit of four quarks. Here {u, d,…} are the PDFs of a full nucleus A. Likewise, when the exchange of Z bosons can be neglected
in charged lepton DIS, the neutral current structure functions (F �

i ) are related to PDFs at LO by
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While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
mass contributions; specifically, we use the S-ACOT(�) scheme [147].

Since we will compare separate components of the TMC contributions, to reduce ambiguity we introduce the nomenclature which
we will use throughout our presentation. Schematically, the OPE TMC terms are related as follows:
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
mass contributions; specifically, we use the S-ACOT(�) scheme [147].

Since we will compare separate components of the TMC contributions, to reduce ambiguity we introduce the nomenclature which
we will use throughout our presentation. Schematically, the OPE TMC terms are related as follows:
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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neutrino and antineutrino DIS on an arbitrary nuclear target (A), where A may also be just a proton, the charged current structure
functions (FW ±

i ) and PDFs are related by:

F ⌫A
1 = (d + s + Ñu + Ñc), F Ñ⌫A

1 = (u + c + Ñd + Ñs), (7.1a)

F ⌫A
2 = 2x (d + s + Ñu + Ñc) , F Ñ⌫A

2 = 2x
�

u + c + Ñd + Ñs
�

, (7.1b)

F ⌫A
3 = +2 (d + s * Ñu * Ñc) , F Ñ⌫A

3 = *2
�

u + c * Ñd * Ñs
�

, (7.1c)

in the limit of four quarks. Here {u, d,…} are the PDFs of a full nucleus A. Likewise, when the exchange of Z bosons can be neglected
in charged lepton DIS, the neutral current structure functions (F �

i ) are related to PDFs at LO by

F l±A
2 = x1

9
⌅

4(u + Ñu) + (d + Ñd) + 4(c + Ñc) + (s + Ñs)
⇧

. (7.2)

While the LO relations shown above are intuitively useful, our calculations are performed at full NLO in QCD including the quark
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We provide additional details below.

TMC: We identify the full set of contributions to the structure function, given by the rescaled OPE equation of
Eq. (4.14), as the ‘‘TMC’’ result; this label is without additional qualifiers.

No-TMC: As we take the (xM2_Q2) ô 0 limit, the pre-factors of FA,(0)
i become unity, and the higher-order (xM_Q)2 and

(xM_Q)4 terms containing the {hi, gi} functions vanish. Additionally, we have ⇠ ô x so that the expressions
in Eq. (4.14) reduces to FA,(0)

i (xN ,Q2) alone. We refer to this as the ‘‘No-TMC’’ result.18

Leading-TMC: The ‘‘Leading-TMC’’ structure functions are obtained from Eq. (4.14) by only keeping the first term on the
RHS which is proportional to (xM_Q)0. Specifically, we are neglecting the terms proportional to (xM_Q)2

and (xM_Q)4 which contain the {hi, gi} functions.
ACOT-TMC: We obtain the ‘‘ACOT-TMC’’ structure functions from the ACOT TMC equation of Eq. (6.14). This result is

similar to the ‘‘Leading-TMC’’, but the pre-factors differ by (⇠r_x) as detailed in Table 6.2. Importantly, the
‘‘ACOT-TMC’’ result does not include the higher-order (xM_Q)2 and (xM_Q)4 terms containing the {hi, gi}
functions.

h-terms & g-terms: The ‘‘h’’ and ‘‘g’’ terms are those terms in the full (OPE) TMC result that are proportional to the hi and gi
functions. We observe that the ‘‘h’’ contributions are proportional to (M2

N_Q2), while the ‘‘g’’ contributions
are proportional to (M4

N_Q4).

7.1. Proton structure functions with TMCs

In comparison to structure functions for massless protons, structure functions with TMCs for nuclei contain two additional layers
of complexity. The first, of course, is the larger nucleon content; the second are the TMCs themselves. Therefore, in order to establish
a baseline intuition of TMCs for nuclear structure functions, we consider briefly TMCs for proton structure functions. For more
comprehensive studies of TMCs for protons, see Ref. [73] and references therein.

We will show results for a range of Q values. For a typical global analysis, the PDF evolution uses an initial scale Q0 in the range
of 1.3 to 1.5 GeV, and a typical kinematic cut is Q ¿ 2 GeV. For example, in Fig. 7.1 we display Q = 1.5 GeV, which is near the
initial evolution scale but below the typical kinematic cut. We also display Q = 10 GeV, which is above the kinematic Q cut (the
W cut is more complex).

We begin with Fig. 7.1, where in the upper panel we plot the absolute structure functions Fi for charged current (W *) and neutral
current (� ,Z) exchange showing full ‘‘TMC’’ (solid), ‘‘Leading-TMC’’ (dash), ‘‘No-TMC’’ (dash-dot), and ‘‘ACOT-TMC’’ (dotted), at
Q = 1.5 GeV and 10 GeV as a function of the Bjorken scaling variable x. In the lower panel we show the ratio of the full ‘‘TMC’’ to
the ‘‘No-TMC’’ results.

18 Note, we always retain the full quark mass dependence in all calculations as this is factorized from the hadron-level kinematics. C.f., Ref. [73] for details
For this reason, we do not refer to the No-TMC term as a ‘‘massless’’ result.
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Fig. 7.1. Upper panels: Proton structure functions for charged current W * (a) F1, (b) F2, and (c) F3 and (d) neutral current �_Z F2 as a function of momentum
fraction xN . We display results for the full ‘‘TMC’’ (solid blue), ‘‘Leading-TMC’’ (dashed green), ‘‘No-TMC’’ (dot-dash orange), and ‘‘ACOT-TMC’’ (dotted red) at
Q = 1.5 GeV (upper lines) and 10 GeV (lower lines). Lower panels: Ratio of Fi with full ‘‘TMC’’ to ‘‘No-TMC’’ at Q = 1.5 GeV and 10 GeV.

Full TMCs for nuclei
In Fig. 7.2 we plot the ratio of the full ‘‘TMC’’ structure functions F TMC

i to the ‘‘No-TMC’’ structure functions FNo*TMC
i for charged

current (W *) and neutral current (� ,Z) exchange for the nuclei of Table 7.1. This ratio highlights the impact of the TMCs.
We observe the general behavior of the nuclear ratios displayed in Fig. 7.2 are very similar to the corresponding proton results

in the lower panels of Fig. 7.1. Because the nuclear and proton results are so similar, we only plot a single Q value (1.5 GeV) in
Fig. 7.2 as other Q values (e.g., Q = 10 GeV) will be similar to the proton results. We will study the detailed Q dependence in the
following.

The results of Fig. 7.2 clearly demonstrate that the TMCs for the nuclei are effectively independent of A. We attribute this curious
finding to the re-scaling property (xAMA = xNMN ) as shown in Section 4. This re-scaling allows us to identically rewrite the TMCs
for structure functions in Eq. (3.23), which are functions of nuclear-level quantities xA and MA, in terms of nucleon-level quantities
xN and MN . As a result, the variable nucleon content of nuclei, which is the defining characteristic of nuclei, is averaged out,
resulting in near universal behavior.

To illustrate the emergence of this universality, let us Taylor-expand the nuclear structure function ratio F TMC*Leading
1 _FNo*TMC

1 to
show this is independent of the nuclear A value up to corrections "2 = (xM_Q)2. We use the expressions of Eq. (7.4) and computing
the derivative as F (0)

i (⇠N ) ˘ Fi(xN ) + �xN [dFi(y)_dy]y=xN , where �xN = (⇠N *xN ) ˘ (x3M2
p _Q

2) ~ 1, If we apply this approximation
to the F1 ratio, for example, we then obtain:

F TMC*Leading
1 (xN )

FNo*TMC
1 (xN )

Ì
�

1 * "2
�

F (0)
1 (⇠N )

F (0)
1 (xN )

Ì
�

1 * "2
�

F (0)
1 (xN ) + O("2)

F (0)
1 (xN )

Ì
�

1 * "2
�

+ O
�

"4
�

. (7.5)



Higher Twist
" The concept was introduced in the early 70’s when it was noticed that it was no longer the 

dimension alone determining the importance of an operator, but rather the difference 
between the dimension and spin.   This became the “twist” on an operator, τ = d - s. 

" Today, the name “twist” is used more broadly as a 1/Qn series including the leading term 
(twist 2) the standard QCD expression. 

" Note that the leading twist 2 term is also expanded into a series of LO, NLO, NNLO…. 
perturbative corrections to the t = 2 term,

" DIS process at high Q, the hard interaction time (1/Q) is small compared to a soft 
interaction time (1/LQCD) - struck quark has “NO TIME” to communicate with the rest of 
the hadron and is independent of the soft process.  

" Higher twist corrections are those where the the struck quark CAN communicate with the 
hadron remanent (at the expense of a 1/Q factor).

" HT contributions do not have any simple partonic interpretation.  They are assumed to 
be generated by parton transverse momentum and multiparton correlation functions, 
(Insights on quark-gluon correlations and quantum interference effects in hadrons). 11

In the formalism of the Operator Product Expansion (OPE) unpolarized structure
functions can be expressed in terms of powers of 1/Q2 (power corrections):

F2,T,3(x,Q2) = Fτ=22,T,3(x,Q
2)+

Hτ=4
2,T,3(x)
Q2

+
Hτ=6
2,T,3(x)
Q4

+ ..... (1)

The first term (τ = 2), expressed in terms of PDFs, represents the Leading Twist (HT)
describing the scattering off a free quark and is responsible for the scaling of SF via
perturbative QCD αs(Q2) corrections. The Higher Twist (HT) terms (τ = 4,6) reflect
instead the strength of multi-parton correlations (qq and qg). Since such corrections
spoil factorization one has to consider their impact on the PDFs extracted in the analysis
of low-Q data. Due to their non-perturbative origin, current models can only provide
a qualitative description for such contributions, which must then be determined phe-
nomenologically from data.
Existing information about high twist terms in lepton-nucleon structure functions

is scarce and somewhat controversial. Early analyses [2, 3] suggested a significant
HT contribution to the longitudinal SF FL. The subsequent studies with both charged
leptons [4, 5, 6] and neutrinos [7] raised the question of a possible dependence on the
order of QCD calculation used for the leding twist. The common wisdom is generally
that HTs only affect the region ofQ2∼ 1÷3 GeV2 and can be neglected in the extraction
of the leading twist.
In this communication we report our results on using the DIS data down toQ= 1 GeV

in the global QCD fit of PDFs with power corrections included in the analysis.

PROCEDURE

The analyzed data set consist of the world charged-leptons DIS cross section data for
the proton and deuteron targets by the SLAC, BCDMS, NMC, FNAL-E-665, H1, and
ZEUS experiments supplemented by the fixed-target Drell-Yan data, the latter constrain
the sea quark distribution, which is poorly determined by the DIS data alone. Basically
the same combination of data was used in the earlier fit of Ref.[9] with the cut Q2 >
2.5 GeV2 imposed on the DIS data. In the present fit alongside with the softer cut
imposed on the SLAC and NMC data, Q > 1 GeV, we also add the DIS data by
FNAL-E-665 experiment [10] since they give additional constraint on the PDFs at
small x provided not too stringent cut on Q is applied. The cut on invariant mass of
the hadron system W > 1.8 GeV is imposed on the DIS data to avoid the resonance
region. The total number of data points (NDP) used in the fit is 3076, in the range of
x = 0.0001÷ 0.9. The analysis 1 is performed in the NNLO QCD approximation with
the target mass corrections [8] taken into account and the dynamical twist-4 (twist-6)
terms parameterized in the additive form as model independent spline functions H(x).
Deuteron data are corrected for nuclear effects following the model [11].

1 Details of the theoretical ansatz can be found in Ref.[9].



Higher Twist 
" There is a dearth of theoretically systematic approaches to describing HTs that have been 

implemented up to now. There are few models trying to answer what is H(x).

" The most natural choice to maintain a partonic picture  is probably a multi-partonic basis 
with extra gluon fields (or quark-antiquark pairs). 

" There are many, many excellent experimental analyses aimed at extracting these higher 
twist contributions to deep inelastic scattering that generally fit measured structure function 
data to the form:

" A Higher Twist model occurring in the literature is the Renormalon Model.  Renormalons 
are not real physical things and don’t correspond to any physical state.  They are simply a 
construct  that allows a more theoretical approach to modeling higher twist and an attempt 
to understand the H(x):

12
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order of QCD calculation used for the leding twist. The common wisdom is generally
that HTs only affect the region ofQ2∼ 1÷3 GeV2 and can be neglected in the extraction
of the leading twist.
In this communication we report our results on using the DIS data down toQ= 1 GeV

in the global QCD fit of PDFs with power corrections included in the analysis.

PROCEDURE

The analyzed data set consist of the world charged-leptons DIS cross section data for
the proton and deuteron targets by the SLAC, BCDMS, NMC, FNAL-E-665, H1, and
ZEUS experiments supplemented by the fixed-target Drell-Yan data, the latter constrain
the sea quark distribution, which is poorly determined by the DIS data alone. Basically
the same combination of data was used in the earlier fit of Ref.[9] with the cut Q2 >
2.5 GeV2 imposed on the DIS data. In the present fit alongside with the softer cut
imposed on the SLAC and NMC data, Q > 1 GeV, we also add the DIS data by
FNAL-E-665 experiment [10] since they give additional constraint on the PDFs at
small x provided not too stringent cut on Q is applied. The cut on invariant mass of
the hadron system W > 1.8 GeV is imposed on the DIS data to avoid the resonance
region. The total number of data points (NDP) used in the fit is 3076, in the range of
x = 0.0001÷ 0.9. The analysis 1 is performed in the NNLO QCD approximation with
the target mass corrections [8] taken into account and the dynamical twist-4 (twist-6)
terms parameterized in the additive form as model independent spline functions H(x).
Deuteron data are corrected for nuclear effects following the model [11].

1 Details of the theoretical ansatz can be found in Ref.[9].

The absolute magnitude of the renormalon contribution can be either left as a fit parameter,
taken from the NNA-calculation, or taken as an universal constant as done in the gluon scheme
of [21].

We once more regard the nonsinglet part of the structure function g1 [22]. In Fig. 1 xg1 is
plotted from the parton distribution set Gehrman/Stirling Gluon A [23] plus/minus the renor-
malon predicted twist-4 contribution, which is on the percent level. The dotted line gives the
renormalon prediction again, amplified by a factor of 10. It becomes visible that the curve con-
tains a zero at x ≈ 0.7, a feature which is a very definite and clear prediction and should be
confronted to experimental data, if a precision on the precent level was reached.

As to FL [6], we plot in Fig. 2 the appertaining renormalon prediction to the twist-4 opera-
tor (short dashed line). The target mass corrections taken from [24] are plotted by a dotted line.
The sum of both is combined to the long dashed line and has to be compared to the experminen-
tal fit by [25, 26] (solid line). The x dependence is quite well approximated by the renormalon
approach, which predicts well the measured x dependence although the absolute magnitude is
smaller than what is suggested by the experimental fit, but the x dependence is described in an
acceptable way.

As to the notation for the twist-4 corrections of the structure functions F2 and F3 we write
(i = 2, 3)

Fi(x,Q
2) = F (LT )

i (x,Q2) +
1

Q2
hi(x) = F (LT )

i (x,Q2)

(

1 +
Ci(x)

Q2

)

. (15)

In the case of F2 the good agreement between the x behavior of the nonsinglet renormalon con-
tribution and the deuteron and proton twist-4 contribution (see Fig 3) to F2 has been noticed
in [7]. It is remarkable that the uncalculated pure singlet part seems to be small or proportional
to the nonsinglet part. At least in the large-x range, where gluons contribute only a minor part,
this is understandable. If we calculate the absolute value of the renormalon contributions for
F2 (solid line) it falls short by a factor 2 or 3, compared with what seems to be required by the
data [8].

The same behavior is found for the structure function F3, where the twist-4 contribution is
shown in Fig. 4. Again, if one is adjusting the absolute size of the renormalon contribution in
the same way as it was done for F2, the result is in the large-x range in a good agreement with
the data. Even more remarkable is the fact that the data indicate a change in sign in the large-x
region close to the one of the renormalon prediction.

4 Conclusions

The renormalon prescription provides a satisfactory description of the shape of the measured
values of the twist-4 contributions at large x in the cases studied so far, leaving the absolute
normalization as a fit parameter. Empirically, it falls short by a factor 2 - 3 as to the measured
magnitude of the finite twist-4 contributions, when it is calculated in the MS scheme.

6



Experimental Extraction of Higher Twist terms

! Here is a renormalon analysis by Beneke and Braun (hep-ph 0010208) of an CCFR 
xF3 HT extraction that serves to show a success of the renormalon model.

! Many more recent and accurate experimental extraction of HT terms exist.  
Chose this analysis that has the renormalon correction for the 1/Q2 (twist 4) term!

! Another important observation is that as the perturbative correction to the leading 
twist term increases (LO to NLO to NNLO…) the higher twist contribution is 
absorbed into the correction!

! Note the mainly negative HT term from neutrino scattering for LO x > 0.1 
13
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Figure 4: Twist-4 correction to xF3 as extracted from the (revised) CCFR data. The
three plots show the effect of including leading order (LO), next-to-leading order
(NLO) and next-to-next-to-leading order (NNLO) QCD corrections in the twist-2
term. The data points57 are overlaid with the shape obtained from the “renormalon

model” for the 1/Q2 power correction.
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Higher Twist of n – A compared to e/µ – A    
   

Perhaps HT for n - A might NOT be the same as e/µ -A

! Gargamelle (CF3Br) & BEBC (Ne/H) SPS experiments, LO QCD & TMC applied:

" More current: Alekhin and Kataev – HT from CCFR F2 and xF3

! That is CHT in neutrino scattering
  smaller & mostly negative

Table 3. Fits of the data with Q2 > 1 GeV 2 and no W cut to different forms of higher twist term 

Z 2 /NDF Form of higher twist term Ref. A~r~ ] 22 
HT(x, Q2) (MeV) (in GeV 2 or GeV 4 

as appropriate) 

a fl A, 

56.3/63-4 0 

46.4/63-5 

47.7/63-5 

53.0/63-5 
53.0/63-5 
53.2/63-5 
52.7/63-5 
51.8/63-5 

53.1/63-5 

51.8/63-5 
53.1/63-5 

]22/Q2 

]22x/Q2(1 - x ) = ] 2 2 / ( W 2 - m  2) [4, 20, 23, 48] 

]22 x2/Q4 (1 - x) 2 [20] 
]22 x3/W 2 [11] 
]22 x2/W,* [11] 
,u2x3/Q2(1 - x) [21] 
- 7 ]22 x~ w 2 (1 - x) [46] 
+ 509122 X2/W 2 
+ 70(]22 x / W  2 (1 -- x)) 2 
-- 7 ]22 x / W  2 (1 -- x) [46] 
+ 509 ]22 x3/W 2 
+70(]22x/W2(1 - - x ) )  2 

- 71~2x/W2(1 - x) [46] 
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Fig. 2. Results of a fit to the x dependence of a general higher 
twist term of the form HT(x ,  Q2)=]22(x)/Q2; for this experiment 
(A) and a combination of EMC (]2p) and SLAC-MIT (ep) data 
(x )  [21]. The inner error bars correspond to Agg= 100 MeV and 
the total errors include the errors on A~rs (see (12)) summed in 
quadrature. The dashed line represents ]22(x)= -0.16 GeV 2 and the 
dotted line represents ]22 (x)= -0.41 x/(1 - x )  GeV 2 

the errors include the errors on A~s as given in (12). 
The two best fits from Table 3, #2 (x )=  - 0 . 1 6  GeV 2 
and ]A 2 (X)  = - -  0.41 x/(l - x) GeV 2, are superposed for 
comparison. 

Table 4 shows the effect on the preferred fit of 
varying the parameter•177 used at Q2=Q2.  The 
fits are almost completely insensitive to the parame- 
terisations of the sea and gluon distributions. This 

lack of sensitivity is general to all fits, both with and 
without higher twist terms and with and without low 
Q2 and low W 2 data. 

A more significant change in parameter•177 is 
to allow 74=0 in the parameter•177 of xF a, as has 
been done in some Q C D  analyses [12, 16]. This 
choice lowers A by 60 MeV and gives a marginally 
less negative higher twist term. However in this case 
there is no true minimum in •2 ;  for increasing 7, ~(2 
falls monotonically approaching a constant as 7 and 
ct become completely anti-correlated. The correlated 
change in #2 and A due to allowing ~ 0  is only 
one standard deviation and our conclusions remain 
essentially unchanged. 

All errors quoted represent the total error. The 
contribution of the systematic error to the total error 
on A and [A 2 ranges from 35% for W 2 >  10 GeV 2, 
to 39% for W 2 > 1.7 GeV 2. The largest systematic er- 
ror in our analysis comes from the unsmearing correc- 
tions discussed in Sect. 4. The sizes of these correc- 
tions are given in Table 1. If all points for which this 
correction is larger than 25% are dropped from the 
fits, the results remain essentially unchanged. 

In all fits, /~2 and A are anti-correlated. This is 
illustrated in Fig. 3 for the fit to the preferred higher 
twist term HT(x, Q2)=#2/Q2. There is no significant 
correlation between p2 and the other fitted variables. 
The second and third standard deviation contours 
illustrate the increasing asymmetry in the errors on 
A, as the lower bound on A tends to zero. This is 
a general feature of our fits. 

CHT

xBj

x = CHT (l±) 

= CHT (n) 

LT

Figure 1: The high-twist contribution to F2.

for the structure function F2. To perform the QCD evolution of F2 one is to involve into the
analysis the singlet and gluon distributions:

FLT
2 (x,Q) =

∫ 1

x
dz

[

C2,q(z)
x

z
(qNS(x/z,Q) + qPS(x/z,Q)) + C2,G(z)

x

z
G(x/z,Q)

]

, (10)

The distributions qPS(x,Q) and G(x,Q) were obtained by integrating the system

dxqPS

d lnQ
=

αs(Q)

π

∫ 1

x
dz

[

P PS
qq (z)

x

z
qPS(x/z,Q) + PqG(z)

x

z
G(x/z,Q)

]

(11)

dxG

d lnQ
=

αs(Q)

π

∫ 1

x
dz

[

PGq(z)
x

z
qPS(x/z,Q) + PGG(z)

x

z
G(x/z,Q)

]

(12)

with the boundary conditions

xqPS(x,Q0) = ηSx
bS(1− x)cS/AS, (13)

xG(x,Q0) = ηGx
bG(1− x)cG/AG, (14)

where

AS =
∫ 1

0
xbS(1− x)cSdx, (15)

AG =
1− < xQ(x) >

∫ 1
0 xbG(1− x)cGdx

. (16)

and < xQ(x) > is the total momentum carried by quarks.
In order to provide the straightforward way for the comparison of our results with the

analysis of Ref.[23], the initial reference scale Q2
0=9 GeV 2 was chosen. In addition to the

point-to-point correlation of the data due to systematic errors, the statistical correlations
between F2 and xF3 were also taken into account. Performing the trial fits we convinced
that adding the factor (1 + γx) to the reference expressions for the the gluon and singlet
distributions do not improve the quality of the fit. Also we fixed parameters γNS, bS and bG

6
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Bringing TMC and HT together in a PDF Analysis!
Extrapolating from pQCD to non-pQCD

! Recognize first the Bodek-Yang model keeps Duality in mind by extending GRV LO DIS PDFs 
down in Q2 and W while including TMC and HT effects! 

!   BASED  ON  ELECTROPRODUCTION  EXPERIMENTAL  RESULTS!

" A more rigorous extrapolation to the SIS, non-pQCD transition region is the first nCTEQ 
global fit of e/µ nuclear ratios into the SIS transition region: e-Print: 2012.11566 [hep-ph]:

" Adding higher–x, lower Q JLab (eA) nuclear ratio measurements to perform a global fit:
   W > 1.7 GeV, Q2 > 1.69 GeV2

How do we use information from the safe DIS region 
to predict behavior in the SIS region?

5

Q2 �n plane: Not exactly to the scale

2 M ν

Q
2

Q
2

(x,y) ∉ [0,1]

0 2 M E
ν

l

E
ν

l

 = 10 GeV

2 M E
ν

l

1 GeV
2

x=0

W
=M

,  Q
2 =2 M

 ν,   
x=1

2 GeV
2

1: Elastic limit (W=M, Q
2
=2 M ν)

DIS region

Forbidden region

2: SIS region (1.2 GeV<W<2 GeV, Q
2
>0)

 W
=M

+m π

(3)

3: DIS region (W>2 GeV, Q
2
> 1 GeV

2
)

(1
)

5 GeV
2

W
= M ∆

W
= 2 G

eV

4: Soft DIS region (W>2 GeV, Q
2
<1 GeV

2
)

ν
l
-N Scattering

(2)

(4) Soft DIS region

SIS region

10 GeV
2

Soft
DIS region is also nothing but the SIS region

Sajjad Athar Discussion with Dan September 30, 2021 10 / 23

5: Safe DIS region  (W>3.5 GeV, Q2 > 4 GeV2)

W
 = 3.5 G

eV

4 GeV2

! Can we start with the measured n-A scattering in the “safe DIS” region to 
gain an understanding/prediction of what to expect in the SIS region?

! Possibility 1: Quark-Hadron Duality (DIS à SIS)
! Possibility 2: High Q,W (DIS) Perturbative QCD à

Lower Q,W (SIS) non-Perturbative QCD 

15

https://arxiv.org/abs/2012.11566


Effective Results for e/µ – A scattering PDFs
pQCD à non-pQCD for electroproduction

16

Resulting nPDFs have new behavior at high-x

29

fi
fNCTEQ15
i

(Log-Linear axis)

Nuclear PDFs for C 
at Q2 = 4 GeV2 

normalized to nCTEQ15

Resulting nPDFs have new behavior at high-x

29

fi
fNCTEQ15
i

(Log-Linear axis)

nCTEQ15HIX (https://ncteq.hepforge.org)

! Comparing the nCTEQ15 (safe DIS) and nCTEQ15hix (lower W and Q) fits to the 
same expanded data set shows an improvement of 15% in c2 /Ndof for HIX fit.

! 3% of the 15% improvement is coming from the inclusion of HT term for  
electroproduction!

! Need to do the same thing with neutrino data and push down to Q2 =1.0 GeV2 



Summary
Understanding the SIS nPQCD Transition Region

v Kinematic Target Mass Corrections are quite well understood
"  applied directly to the theory/generators in the relevant low - Q2 regions.

! Dynamic Higher Twist Effects 
! have only a few models and HT are mainly extracted experimentally.  
! Need better understanding of HT in neutrino scattering
! As the perturbative correction to the leading twist term increases (LO to NLO to 

NNLO…) the higher twist eventually seems to be absorbed in the correction!
! For electroproduction as long as TMC is applied, the contribution of HT for x < 0.7 and 

Q2 > 1.7 GeV2 is minimal!
" Better understanding of HT in neutrino scattering with the help of 

completed MINERvA SIS and DIS analyses would be welcome!

! Extrapolating from Resonance to DIS is also an important direction!
! Theoretically - work of Natalie Jachowicz et al and Minoo and …
! Experimentally – MINERvA perhaps higher W single and multi-pion results.

17



Backup

18



Effect of Safe DIS cuts Q2 > 4 GeV2, W> 3.5 GeV            
on MINERvA ME Sample

19

Simple MC Events without 

normalization992,258

173,703

137,274
22,327

90,019

Ahmad Dar

1.0

0.18

0.14
0.09 0.02

nCTEQ pQCD
Cuts

Effect on MINERvA ME 
sample size of Q2 and W cuts 

Note: starting with
 Q2 ≥ 1.0 GeV2

Only ≈ 2 % of MINERvA ME events with Q2 > 1 GeV2 are in  the SAFE DIS region



Understanding / Predicting the SIS Region
Quark – Hadron Duality

" Quark–hadron duality is a general feature of strongly interacting landscape
" How does the physics (language) of quark/gluons from DIS meet the physics of nucleons/mesons 

(pions) of SIS  à quark-hadron duality

" Ratio of the strength of the SIS to DIS region.  Ideal Duality I = 1.0 .

" F2
eN (  ) for values of Q2 indicated on spectra compared to LO DIS QCD fit at Q2 = 10 

GeV2. Value of integral I(Q2).  Duality works well for eN scattering!

20

⌫A Interactions: SIS and DIS M. S. Athar and J. G. Morf́ın

This in turn would allow us to relate DIS structure functions to resonance form factors.

Some three decades later there was considerable accumulation of charged lepton DIS

studies at multiple laboratories with nucleon structure functions well measured over a

broad range in x,Q2. Many experimental tests had proclaimed the success of QCD, and

a new examination of duality with Je↵erson Lab resonant production experiments was

begun. An early Je↵erson Lab 6 GeV era (E00-116??) measurement [4] showed that

duality was clearly observed Figure 1 with an indication that for Q2  0.5GeV 2 the

data resembles a valence like curve. The experimental and theoretical study of duality

proceeded relatively smoothly for e-N and even for e-A interactions and there is now

visual evidence that duality holds for F p

2 , F
p

1 , F
p

L
, F n

2 , F
D

2 , FC

2 , F Fe

2 and FAu

2 .

Duality HOLDS in electron–nucleon scattering!
What does that mean?

◆ If you take F2 determined from a QCD fit to DIS data and extrapolate down in ξ
- a form of xBj that compensates for low-Q phenomena.  The extrapolation runs 
approximately through the middle of the resonances.

41
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Fep, en
2 : Duality HOLDS in electron–nucleon scattering

Duality holds for both proton and deuteriuim targets (=for neutron target)
Niculescu, PRL85

JLAB: recent experimental data on F2 of
the reactions ep � eX , eD � DX in the
resonance region

solid curve — global fit to the world’s DIS
data by NMC collaboration

The data at various values of Q2 and W
average to a smooth curve if expressed
in terms of �.

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 5 / 22
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Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

�B =
Q2 +

q

Q4 + 4m2
qQ2

2mN�(1+
p

1+Q2/�2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable �

� = lim
mq�0

�B =
2Q2/2mN�

(1+
p

1+Q2/�2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding � in powers of 1/Q2 at high Q2 gives the variable 2mN�+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
�

� 1
x

„

1+
m2
Nx2
Q2

«

=
2mN� +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get � � 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 6 / 22
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Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 6 / 22Figure 1. Comparison of the series of resonances measured by E00-116(??) at
the indicated Q2 compared to the extrapolated DIS measurement from the NMC
collaboration at 10 GeV 2

However, with the much more precise Je↵erson Lab data, there should be an

improved method to test duality precisely. A possible solution is to quantify the degree

to which duality is satisfied by defining the ratio of integrals over structure functions

from the resonance and DIS regions:

I|(Q
2, Q2

DIS) =

R
⇠max

⇠min
d⇠FRES

j (⇠, Q2)
R

⇠max

⇠min
d⇠FDIS

j (⇠, Q2
DIS)

(1)

The integrals use the Nachtmann variable (xBjorken ⌘ x) ⇠(x,Q2) = 2x

1+
p

1+4x
2
M

2
/Q

2

and the integration over the resonance region is defined as typically Wmin = M + m⇡

and Wmax = 2.0 GeV. For perfect quark-hadron duality the value of I would be 1.0.

Using this new measure of agreement with quark-hadron duality for eN scattering

the authors of reference [5] used the full GiBUU model [6] that has been shown to
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FIG. 5: Comparison of the Rein-Sehgal structure functions at Q2 = 0.4, 1 and 2 GeV2 with the appropriate scaling functions
at Q2

DIS=10 GeV2. In the first row xF1, F2 and xF3 structure functions for CC neutrino-proton scattering are plotted. In the
second row the structure functions for CC neutrino-neutron scattering are shown.

In the quantitative analysis we define ratios of two integrals over the resonance region:

R
(

f,Q2
R; g,Q

2
D

)

=

∫ ξmax

ξmin

dξ f(ξ, Q2
R)

∫ ξmax

ξmin

dξ g(ξ, Q2
D)

. (40)
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In the quantitative analysis we define ratios of two integrals over the resonance region:

R
(

f,Q2
R; g,Q

2
D

)

=

∫ ξmax

ξmin

dξ f(ξ, Q2
R)

∫ ξmax

ξmin

dξ g(ξ, Q2
D)

. (40)

Stress the importance
of including the 
non-resonant 
pion production!
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The leptonic current is defined as:

J µ
lepton = ū(k′)γµ(1− γ5)u(k). (2)

In the RS model the leptonic mass is set to be zero. In this limit

qµJ µ
lepton = 0. (3)

One can introduce the basis of three vectors of length ±1 orthogonal to qµ:

eµL =
1√
2
(0, 1,−i, 0),

eµR =
1√
2
(0,−1,−i, 0),

eµS =
1

√

Q2
(q, 0, 0, ν).

Correspondingly, the leptonic tensor can be decomposed as:

Lµν = kµk′ν + k′µkν − gµνk · k′ − iεµνκλkκk
′

λ = (4)

=
∑

α,β∈(S,L,R)

Mαβeµα(e
ν
β)

∗. (5)

When we calculate the contraction of the leptonic tensor with the hadronic tensor

Wµν =

(

−gµνW1 +
pµpν
M2

W2 − iεµναβpαqβ

2M2
W3

)

, (6)

(M is the nucleon mass) we find that

LµνWµν = Lµν
diagWµν , (7)

where

Lµν
diag = A2eµS(e

ν
S)

∗ +B2eµL(e
ν
L)

∗ + C2eµR(e
ν
R)

∗. (8)

A2, B2, C2 are Lorentz scalars which can be evaluated in the LAB frame:

A2 = Lµνe
µ
S(e

ν
S)

∗ =
Q2

2q2
(

(2E − ν)2 − q2
)

, (9)

B2 = Lµνe
µ
L(e

ν
L)

∗ =
Q2

4q2
(2E − ν + q)2, (10)

C2 = Lµνe
µ
R(e

ν
R)

∗ =
Q2

4q2
(2E − ν − q)2. (11)
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Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

ξB =
Q2 +

q

Q4 + 4m2
qQ2

2mNν(1+
p

1+Q2/ν2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable ξ

ξ = lim
mq→0

ξB =
2Q2/2mNν

(1+
p

1+Q2/ν2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding ξ in powers of 1/Q2 at high Q2 gives the variable 2mNν+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
ξ
≈
1
x

„

1+
m2
Nx2
Q2

«

=
2mNν +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get ξ ≈ 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 6 / 22
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 Neutrinos – NO HIGH STATISTIC NUCLEON DATA    
must rely on models for n-n, n-p and n-N scattering 

21

Now for Neutrinos
NO high-statistics Experimental Data available - turn to theory 

Use models for n-n and n-p scattering? 

11
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Duality for the isoscalar nucleon Fj "^^ structure function calculated within GiBUU model. (Left) F2^ as a function 
of ^, for Q = 0.225,0.525,1.025 and 2.025 GeV (indicated on the spectra), compared with the leading twist parameterizations at 
Q^ = 10 GeV . (Right) Ratio if^ of the integrated F2^ in the resonance region to the leading twist functions. 

^ correspond to the second (1.40 GeV < W < 1.56 GeV) and the third (1.56 GeV < W < 2.0 GeV) resonance regions. 
The general picture shows a reasonable agreement with the duality hypothesis. 

In the right panel of Fig. 1, the ratio of the integrals if^, defined in (3), is shown not only for the whole structure 
function (resonance + 1-pion background), but also for the resonance contribution separately. 

For Q^ > 0.5 GeV^, the ratio if for the resonance contribution only is at the level of 0.85, which is smaller and 
flatter in Q^ in comparison with the results [6, 15] of the Dortmund group resonance model. The difference is due to the 
different parameterization of the electromagnetic resonance form factors used in the two models. The background gives 
a noticeable contribution and brings the ratio up to 0.95. The fact, that it is smaller than 1 is of no surprise, because 
additional nonresonant contributions like 2- and many-pion background are possible, but not taken into account here. 
They are the subject of coming investigations. 

The principal feature of neutrino reactions, stemming from fundamental isospin arguments, is that duality does not 
hold for proton and neutron targets separately. The interplay between the resonances of different isospins allows for 
duality to hold with reasonable accuracy for the average over the proton and neutron targets. We expect a similar 
picture emerges in neutrino reactions with nuclei. 

For neutrinoproduction, the structure function F2^ and the ratio / j ' ^ are shown in Fig. 2 for the resonance 
contribution only. The ratio is at the level of 0.7, which is (similar to the electron case) smaller than 0.8, which 
has been calculated within the Dortmund resonance model [6, 15]. Thus, one would expect a large contribution from 
the background. The role of the background in neutrino channel is under investigation now. 
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Duality for the isoscalar nucleon Fj '^^ structure function calculated within the GiBUU model. (Left) Fj^'^ as a function 
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Resonance estimates from Lalakulich, 
Melnitchouk and Paschos for n-n and 
n-p scattering.

Resonance estimates from GiBUU
Model for n-N scattering. 
DIS at 10 GeV2

RES
DIS

I >> 1 I << 1

n p n n

Strong suggestion here that for neutrinos: 
duality holds for isoscalar nucleon (F2

np + F2
nn)/2.

What does that imply for duality for nuclei with large neutron excess??

How duality should be applied with neutrinos is still an open question!

In general, for neutrinos the resonance structure functions for proton are much 
larger than for neutrons however DIS structure functions the situation is opposite.



Now Nucleus not Nucleon Qualitative look at Q-H Duality:
e-A results

22

Now Nucleus not Nucleon
Qualitative look at Q-H Duality: e A

◆ Now e-nucleus – individual resonances visible in e-P, somewhat 
less in e-D and mostly smeared out by e-Fe.   Curved line is from 
MRST global DIS fits with EMC effect for Fe applied.

9

December 3, 2010 20FNAL Seminar, Eric Christy

p

Fe

d

ξ = 2x / [1 + (1 + 4M2x2/Q2)1/2]

•Fermi motion in the nucleus 
accomplishes averaging in 
x, x.

=> Duality works even           
better in nuclei.

              Duality in NucleiDuality in Nuclei

Duality is also observed in the EMC effect!



Even more uncertain for n when talking of NUCLEI not NUCLEON- 
Is the problem for Fe the neutron excess 

and/or models for Final State Interactions?

" In general, for neutrinos the resonance structure functions for proton are much larger 
than for neutrons and in the case of DIS structure functions the situation is opposite.

 

" Although to some extent model dependent, a general tendency is that DIS structure 
functions are much larger than the resonance contribution at lower W. 

! How duality should be applied with neutrinos is still an open question 23

Duality with n Fe Scattering
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collaborations. It appears, that the resonance curves slide along the DIS curve, as one would expect from local duality, 
but lie below the DIS measurements. Hence, the computed structure functions do not average to the DIS curve. The 
necessary condition for local duality to hold is thus not fulfilled. 
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FIGURE 5. (color online) The computed resonance curves F2 ^"156 as a function of E,, calculated within Ghent(Ieft) and 
Giessen (right) models for Q^ = 0.2,0.45,0.85, 1.4, and 2.4 GeV^. The calculations are compared with the DIS data from 
Refs. [26, 27]. The DIS data refer to measurements at g ,̂̂ ^ = 7.94, 12.6 and 19.95 GeV^. 

The ratio /j ^^ defined in Eq.(3) is shown in Fig. 6. The curve for the isoscalar free nucleon case is also presented 
for comparison. For the Ghent group plot it is identical to that presented in Ref. [6] with the "fast" fall-off of the axial 
form factors for the isospin-1/2 resonances. For the Giessen group plot it is identical to that in the right panel of Fig. 1. 

Our results show, that for both the Ghent and the Giessen models 1) this ratio is significantly smaller than 1 for all 
Q^; 2) it is significantly smaller than the one for the free nucleon; 3) h is even lower than the corresponding ratio for 
electroproduction; 4) h slightly decreases with Q^. 

To summarize, within the two models, which implement elementary resonance vertices differently and treat nuclear 
effects differently, we obtain qualitatively the same effect, that the resonance structure functions are consistently 
smaller that DIS functions in the same region of Nachtmann variable B,. This is not what one would expect from 
Bloom-Gilman duality. Recall, that in this analysis for nuclei, we included the resonance structure functions, and 
ignore the background ones. To estimate their contribution and compare the results with the nucleon case would be 
one of the primary tasks of coming investigation. 

Further results of the Ghent model are given in [22]. 
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W =\.\ GeV (solid line) and threshold (dotted line). For each of these two choices we have used two sets of DIS data in determining 
the denominator of Eq. (3). These sets of DIS data are obtained at Qrijs = 12.59 and 19.95 GeV . 
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Our results show, that for both the Ghent and the Giessen models 1) this ratio is significantly smaller than 1 for all 
Q^; 2) it is significantly smaller than the one for the free nucleon; 3) h is even lower than the corresponding ratio for 
electroproduction; 4) h slightly decreases with Q^. 

To summarize, within the two models, which implement elementary resonance vertices differently and treat nuclear 
effects differently, we obtain qualitatively the same effect, that the resonance structure functions are consistently 
smaller that DIS functions in the same region of Nachtmann variable B,. This is not what one would expect from 
Bloom-Gilman duality. Recall, that in this analysis for nuclei, we included the resonance structure functions, and 
ignore the background ones. To estimate their contribution and compare the results with the nucleon case would be 
one of the primary tasks of coming investigation. 

Further results of the Ghent model are given in [22]. 
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Figure 9. Figure from [5]: Ratio I⌫Fe
2 for iron calculated within the Ghent [18] (left)

and Giessen [8](right) models. For Fe the results are displayed for two choices of the
lower limit of the numerator in the integral of Equation (1.1): W = 1.1 GeV (solid line)
and ”threshold” that takes into account the Fermi motion within the Fe nucleus (dotted
line). For each of these two choices they used two sets of DIS data in determining the
denominator of the integral I one at Q2

DIS = 12.59 and the other at 19.95 GeV2. The
ratio I⌫N

2 for the free nucleon (dash-dotted line) is shown for comparison

measurement of F2 was used, it was taken from higher-Q2 measurements. The important

feature was that no higher twist ”1 / Q2” e↵ects (REFER SA SECTION ON TWIST)

were included in the evaluation of the integral denominator of the ratio. This being

the case, the observation from Figure 2 that the agreement with duality is quite close

to complete is a suggestion that there are minimal additional higher twist e↵ects in

the DIS data or needed in the DIS theoretical expression as long as it is evaluated for

Q2 � 10GeV 2.

Considering these conclusions, it should be possible to learn about possible higher

twist e↵ects by observing violations of duality? Many experimentalists, constrained by

their experimental set-up to the lower Q2 edge of the DIS region, look at these higher

twist e↵ects as an unwelcome complication of the analysis. However increased knowledge

of higher twist contributions could provide better understanding of the transition from

perturbative to non-perturbative QCD. Accurate determination of the higher-twist

e↵ects should then be a goal of current and future analyses.

There have been several studies investigating the link between duality and higher

twist e↵ects [19, 20, 21, 22, 23]. In the earlier study [19] the authors emphasize the

ability to use duality to determine higher twist contributions from structure function

data in the resonance region by using moments (in x) of the structure function F2.

For example, in the integral over x of the structure function F2(x,Q
2), they are able to

determine that the ratio of the higher twist contribution to leading-twist contributions at

Q2 = 2 GeV 2 is order 10%. The ratio of higher- to leading-twist contributiuons grows

rather rapidly as the index of the moment increases thereby emphasizing higher and

higher x regions. In [22] the author examines the size of twist-4 e↵ects using moments

of the spin-dependent structure functions to suggest that higher twists are small for

Q2 � 1GeV 2.
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Refs. [26, 27]. The DIS data refer to measurements at g ,̂̂ ^ = 7.94, 12.6 and 19.95 GeV^. 

The ratio /j ^^ defined in Eq.(3) is shown in Fig. 6. The curve for the isoscalar free nucleon case is also presented 
for comparison. For the Ghent group plot it is identical to that presented in Ref. [6] with the "fast" fall-off of the axial 
form factors for the isospin-1/2 resonances. For the Giessen group plot it is identical to that in the right panel of Fig. 1. 

Our results show, that for both the Ghent and the Giessen models 1) this ratio is significantly smaller than 1 for all 
Q^; 2) it is significantly smaller than the one for the free nucleon; 3) h is even lower than the corresponding ratio for 
electroproduction; 4) h slightly decreases with Q^. 

To summarize, within the two models, which implement elementary resonance vertices differently and treat nuclear 
effects differently, we obtain qualitatively the same effect, that the resonance structure functions are consistently 
smaller that DIS functions in the same region of Nachtmann variable B,. This is not what one would expect from 
Bloom-Gilman duality. Recall, that in this analysis for nuclei, we included the resonance structure functions, and 
ignore the background ones. To estimate their contribution and compare the results with the nucleon case would be 
one of the primary tasks of coming investigation. 

Further results of the Ghent model are given in [22]. 
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measurement of F2 was used, it was taken from higher-Q2 measurements. The important

feature was that no higher twist ”1 / Q2” e↵ects (REFER SA SECTION ON TWIST)

were included in the evaluation of the integral denominator of the ratio. This being

the case, the observation from Figure 2 that the agreement with duality is quite close

to complete is a suggestion that there are minimal additional higher twist e↵ects in

the DIS data or needed in the DIS theoretical expression as long as it is evaluated for

Q2 � 10GeV 2.

Considering these conclusions, it should be possible to learn about possible higher

twist e↵ects by observing violations of duality? Many experimentalists, constrained by

their experimental set-up to the lower Q2 edge of the DIS region, look at these higher

twist e↵ects as an unwelcome complication of the analysis. However increased knowledge

of higher twist contributions could provide better understanding of the transition from

perturbative to non-perturbative QCD. Accurate determination of the higher-twist

e↵ects should then be a goal of current and future analyses.

There have been several studies investigating the link between duality and higher
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ability to use duality to determine higher twist contributions from structure function

data in the resonance region by using moments (in x) of the structure function F2.

For example, in the integral over x of the structure function F2(x,Q
2), they are able to

determine that the ratio of the higher twist contribution to leading-twist contributions at

Q2 = 2 GeV 2 is order 10%. The ratio of higher- to leading-twist contributiuons grows

rather rapidly as the index of the moment increases thereby emphasizing higher and

higher x regions. In [22] the author examines the size of twist-4 e↵ects using moments

of the spin-dependent structure functions to suggest that higher twists are small for

Q2 � 1GeV 2.
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Summary: Quark-Hadron Duality for e-N/A and n-N/A 

" F2 ep en: Qualitative and quantitative duality HOLDS in electron–nucleon scattering. 

" F2 np : In neutrino–nucleon scattering, duality seems to roughly holds for the average 
nucleon but NOT individually for neutron and proton. 

" F2 eA : Different story, looks good but quantitative check in e–A not as good as e–n/p 

" F2 nA : Not at all clear how duality works here, particularly in nuclei with an excess 
number of neutrons. 

" In general, for neutrinos, the resonance structure functions for proton are much larger 
than for neutrons and in the case of DIS structure functions the situation is opposite. 

" Although to some extent model dependent, a general tendency is that DIS structure 
functions are much larger than the resonance contribution at lower W. 

! For neutrinos: not yet at all clear how duality should be applied!
24



Physics of the Lower Q, W (SIS)  
non-Perturbative QCD Region

! The “Infinite Momentum Frame” or at least “SAFE Deep Inelastic Region” à 
perturbative QCD region.  
! We agree it certainly, does not describe the environment of our 1 - 10  GeV neutrino 

beams! How do we know we are there or at least getting close…?

! For smaller Q2 and/or larger xBj, we need to include M2x2/ Q2 corrections to the 
perturbative theory. Often characterized as “1 / Q2 effects“ 

25
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R. Ruiz et al.

Fig. 1.1. Schematic of ⌫lA ô lX for a lowest-order heavy quark production, qW < ô Q. (a) [left] Leading twist {MA = 0, kT = 0}. (b) [center] Leading twist with
TMCs {f inite MA , kT Ì O(MA)}. The ‘‘hard scattering’’ is indicated by the yellow circle. The hadron dynamics gives the parton (green) a finite kT , illustrated
by the (red) gluon radiation; this is not a next-to-leading order (NLO) correction as the soft (low energy) gluon radiation is outside (before) the hard scattering
process (yellow circle). (c) [right] Higher twist. A second parton (gluon) is exchanged between the hadron and the hard scattering (yellow circle).

be confused despite their distinct origins; in some sense, TMCs in DIS ‘‘accidentally’’ have the same characteristic power-suppression
as in higher-twist corrections.

We illustrate the differences between leading twist, TMCs, and higher twist in Fig. 1.1 for leading-order heavy quark Q production
in the charged current process ⌫lA ô lX. In the left panel (a) is a depiction of the leading-twist process in the limit of vanishing
TMCs, i.e., kT = 0 and (MA_Q) ô 0. In the center panel (b) is the leading-twist process with finite (MA_Q) which yields TMCs and
generates kT Ì O(MA) via a gluon emission that occurs at a time ⌧TMC Ì 1_kT before the hard process (indicated with a yellow
circle). In the right panel (c) is the same process but with a typical higher-twist correction, i.e., an addition parton (gluon) exchange
between the hadron and the hard scattering. The characteristic time of the interactions is inversely proportional to the energy scale,
(time) Ì 1_(Energy). For large Q, the hard scattering time scale (1_Q) is short, while the characteristic time scale of the hadron
dynamics (1_⇤NP ) is long. The probability of a second parton (gluon) participating in the hard interaction is proportional to the
ratio of the time scales; thus, we expect higher twist contributions to be suppressed by powers of (⇤NP _Q).

ACOT Formalism: Returning to the literature, we also note that TMC prescriptions based on the OPE and the factorization
approach of Ellis, Furmanski, and Petronzio were similarly compared for semi-inclusive processes in Ref. [69]. In the collinear
parton model (kT = 0), TMCs have been accounted for in the Aivazis–Collins–Olness–Tung (ACOT) formalism [70,71], which is
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evaluation of tau-neutrino deep-inelastic CC cross sections, including NLO corrections, charm production, tau-mass threshold, and
target mass effects in the collinear approximation, was also presented in Ref. [72].
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complicated expressions in the aforementioned OPE-based papers into a simple, easy-to-use, and modular form, valid at all orders
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apply also to DIS off nuclear targets since the OPE is (in theory) independent of target states. However, previous discussions [73]
do not address the subtle distinctions between a nucleon and nuclear target. Furthermore, the fact that established notation does
not consistently distinguish between nucleons and nuclei in their respective kinematics, the fact that the spin of a generic nucleus
can be different from 1/2, and the fact that the master equations in Eq. (3.23) can be expressed conveniently in terms of ‘‘averaged
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collinear parton model; throughout this review, we consider them on equal footing. As discussed above, the collinear parton model
is rigorously based on factorization theorems. These provide field-theoretic definitions of PDFs and make statements about the error
of the factorization approximation, which is generally inversely proportional to a positive power of a hard scale of the process. It is
generally believed that collinear factorization remains valid in lepton–nucleus and proton–nucleus collisions, possibly with nuclear-
enhanced higher twist terms [75]. However, the literature on factorization in the nuclear case is sparse and we consider this a
working assumption. Moreover, the non-collinear parton model (where the TMCs were shown to be equivalent to the OPE results
at leading power) is not covered by the factorization proofs cited above. Exploring these more theoretical questions is interesting
and relevant but beyond the scope of this article. Here, we take the collinear parton model and the OPE for granted, and explore
extensively what happens when we transition from nucleons to nuclei in DIS.

Overview: The starting point of our analysis is to consider the full nucleus as our target and apply only general symmetry
principles, e.g., Lorentz invariance, in deriving nuclear structure functions and their TMCs. This means that until Section 4 there is

KINEMATIC  DYNAMIC



TMC - Brief outline of one type of derivation
! The two standard moments of structure functions are the Cornwall-Norton and 

Nachtmann moments. 
! The Cornwall-Norton moments appropriate for the region Q2 ≫ M2 of F2 are given by: 

! The Nachtmann moments already take into account finite M2/Q2 corrections: given 
by:

" Relate Nachtmann and CN moments by expanding the moments in powers of 1/Q2:

" Since Nachtmann protect the moments of the structure functions from target mass effects the 
TM effects can be identified directly with the moments of the quark distributions. 
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Problems with the GP implementation of TMCs were soon identified, however, by a number of authors [6, 7, 8, 9, 10],
in particular the so-called “threshold problem”. This pertains to the fact that if the parton distribution function is a
scaling function of ξ, then since the maximum kinematic value of ξ at any finite Q2 is ξ0 ≡ ξ(x = 1) < 1, the parton
distribution is not defined in the unphysical region between the elastic limit ξ = ξ0 and ξ = 1. De Rujula et al. [11]
argued that the problems can be resolved by considering in addition higher twist operators. They note that there
is a nonuniformity in the limits as n → ∞ and Q2 → ∞, and the appearance of higher twist effects proportional to
nM2/Q2 for the n-th moment signals the breakdown of the entire approach at low W (<∼ 2 GeV).
Tung and collaborators [8, 9] attempted to redress the threshold problem by invoking an ansatz which smoothly

merges the perturbative QCD behavior of the moments at large Q2 with the correct threshold behavior in the n → ∞
limit. As they note, however, such a prescription is not unique, and in fact agrees with the standard OPE expansion
only in the n → ∞ limit.
The proposed solution of De Rujula et al. [11] to the threshold problem implies that higher twist effects play an

important role at low Q2. Recent experiments at Jefferson Lab have shown, however, that the size of the higher twist
effects is actually quite small for the proton F2 structure function, down to relatively lowQ2 values (Q2 ∼ 0.5−1 GeV2)
[12]. The question which we address here is whether a self-consistent formulation of TMCs can be made with only
twist-two contributions, without appealing to higher twist effects. While not a proof, it seems plausible to us that,
at least from a purely theoretical perspective, it should be possible to obtain an implementation of TMCs for a
hypothetical case of negligible higher twist effects, which would demand a consistent resolution of the threshold
problem for the twist-two part alone. Such a view could be motivated by observing that even though it is the same
proton state that the twist-two and higher twist terms originate from, in principle the matrix elements of the local
operators whose matrix elements characterize the twist expansion are in fact independent.
While interesting in its own right, the question of how to implement TMCs is also of practical importance, given the

high quality electron-nucleon structure function data at low and moderate Q2 which are being collected at Jefferson
Lab [12]. TMCs are also vital in analyzing neutrino scattering data [13], much of which are taken at relatively low
energies, and must be understood if one is to extract reliable information on neutrino oscillations for instance. For
spin-dependent scattering, TMCs have also been calculated for the g1 and g2 structure functions [4], and recently for
spin-1 targets such as the deuteron [14].
The pertinent question is whether the Nachtmann moment of the twist-two part of the structure function is Q2

independent, as supposed in the original formulation [5]. In Sec. II we review the standard derivation and results for
TMCs within the operator product expansion. We outline the problems associated with the standard approach, and
suggest an alternative formulation designed to avoid the unphysical threshold problem. Earlier work [10] did indeed
find that the Nachtmann moments do not account for all possible (leading twist) M2/Q2 effects. However, we suggest
a prescription where the M2/Q2 dependence of the Nachtmann moments of the structure functions does equal, to
very high accuracy, the M2/Q2 dependence of the moments of the quark distributions, for all Q2. Numerical results
are presented in Sec. III, where we compare the x dependence of the F2 and FL structure functions using the various
TMC prescriptions, and examine the onset of scaling in terms of the Nachtmann moments of the structure functions.
In Sec. IV we summarize our findings and discuss the broader implications of our results for the interpretation of
parton distributions at finite Q2.

II. OPERATOR PRODUCT EXPANSION

We begin this section by firstly reviewing the pioneering work on target mass corrections as obtained by Georgi
and Politzer [3]. We will consider the case of unpolarized scattering from a spin-1/2 nucleon, which is described by
two structure functions, F1(x,Q2) and F2(x,Q2) (or alternatively F2 and the longitudinal structure function FL). We
shall focus on the F2 structure function, but later generalize the discussion to include also FL.
The two standard moments of structure functions encountered in the literature are the Cornwall-Norton and Nacht-

mann moments. The Cornwall-Norton moments of F2 are given by:

Mn
2 (Q

2) =

∫ 1

0
dx xn−2 F2(x,Q

2) , (2)

and are appropriate for the region Q2 & M2. The Nachtmann moments, on the other hand, take into account finite
M2/Q2 corrections to the Bjorken limit, and are given by:

µn
2 (Q

2) =

∫ 1

0
dx

ξn+1

x3

[

3 + 3(n+ 1)r + n(n+ 2)r2

(n+ 2)(n+ 3)

]

F2(x,Q
2) , (3)

with r =
√

1 + 4x2M2/Q2. The essential difference between the CN and Nachtmann moments comes from the trace
terms appearing in the matrix elements of operators of definite spin, which are disregarded in the CN approach, but
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arriving at same results but with a modified upper limit in the integrals. Specifically, we recover for the F2 structure
function [3]:

F2(x,Q
2) =

ξ2(1− a2ξ2)

(1 + a2ξ2)3
F (ξ) + 6a2

ξ3(1− a2ξ2)

(1 + a2ξ2)4
H(ξ) + 12a4

ξ4(1 − a2ξ2)

(1 + a2ξ2)5
G(ξ) , (12)

where a ≡ M/Q. The CN moments of the target mass corrected F2 structure function are then given by [3]:

Mn
2 (Q

2) =

∫ 1

0
dxxn−2F2(x,Q

2) =
∞
∑

j=0

(

M2

Q2

)j
(n+ j)!

j!(n− 2)!

An+2j

(n+ 2j)(n+ 2j − 1)
. (13)

To calculate the Nachtmann moments, we rewrite Eq. (3) in terms of ξ:

µn
2 (Q

2) =

∫ ξ0

0
dξ ξn−2 (1 + a2ξ2)3

1− a2ξ2
F2(ξ, Q

2)

[

1−
3(r − 1)

r2(n+ 2)
−

3(r − 1)2

r2(n+ 3)

]

, (14)

with F2(ξ, Q2) given by Eq. (12), and

ξ0 = ξ(x = 1) =
2

1 +
√

1 + 4M2/Q2
. (15)

In the following section we will examine the extent to which the Nachtmann moments of F2 correspond to the moments
An of the quark distribution function, for different functional forms of F (ξ), and quantify the effect of the kinematic
thresholds. Central will be the interpretation of the function F (ξ) itself.
Before proceeding, for completeness we also give the results for the longitudinal structure function, FL, and its

moments. In the Q2 → ∞ limit, FL = 0, while at finite Q2 the TMCs render FL nonzero. Of course, higher order
perturbative QCD corrections which depend on αs also give rise to a nonzero FL, as do higher twist effects. However,
we artificially set both of these to zero in order to isolate the effects of TMCs on FL explicitly. Following a similar
procedure as for F2 above, we can write the longitudinal structure function as:

FL(ξ, Q
2) =

2a2ξ2

(1 + a2ξ2)2
H(ξ) +

4a4ξ3

(1 + a2ξ2)3
G(ξ) , (16)

which clearly vanishes as a → 0 (or Q2 → ∞). The corresponding Nachtmann moments are then given by:

µn
L(Q

2) =

∫ ξ0

0
dξ ξn−2(1− a4ξ4)

(

FL(ξ, Q
2) +

4a2ξ2

(1− a2ξ2)

(n+ 1)(1− a2ξ2)− 2(n+ 2)

(n+ 2)(n+ 3)
F2(ξ, Q

2)

)

. (17)

Having derived analytic expressions for the F2 and FL structure functions and their moments, in the next section we
present numerical results using several different prescriptions for the ξ dependence of the quark distribution function.

III. TARGET MASS CORRECTIONS

The main purpose of this work is to analyze phenomenologically what is the best procedure to incorporate TMCs
in the analysis of structure functions. More specifically, we address the question of which procedure is most effective
in rendering the moments of the leading twist structure functions equal to the moments of the quark distributions at
finite Q2. We consider whether there is any sizable difference for the moments when the upper limit of the integrals
in G(y) and H(y) is 1 or ξ0. In particular, since the twist-two part of the deep inelastic cross section should be zero
at x = 1 (ξ = ξ0), we study the impact of a vanishing parton distribution at ξ0.

A. Prescriptions

To address these issues, in this section we present several prescriptions for the implementation of target mass
corrections, and discuss their limitations and practical consequences. We consider three scenarios:
(A) Integrate a quark distribution:

q(ξ) = N ξ−1/2(1 − ξ)3 (18)

3

kept in the Nachtmann approach. The Nachtmann moments are constructed such that from the infinite operators of
twist-2 and different spin contained in the trace terms, only the operators of spin n contribute for the n− 2 moment
of the structure function.
The Nachtmann and CN moments can be related by expanding the moments in powers of 1/Q2. Expanding µn

2 to
O(1/Q6), one has:

µn
2 (Q

2) = Mn
2 (Q

2) −
n(n− 1)

n+ 2

M2

Q2
Mn+2

2 (Q2) +
n(n2 − 1)

2(n+ 3)

M4

Q4
Mn+4

2 (Q2) −
n(n2 − 1)

6

M6

Q6
Mn+6

2 + · · · (4)

Note that there is a mixing between the lower and higher moments. To this order we can also express the CN moments
in terms of the Nachtmann moments:

Mn
2 (Q

2) = µn
2 (Q

2) +
n(n− 1)

n+ 2

M2

Q2
µn+2
2 (Q2) +

n(n2 − 1)(n+ 2)

2(n+ 3)(n+ 4)

M4

Q4
µn+4
2 (Q2)

+
n(n2 − 1)(n+ 2)(n+ 3)

6(n+ 5)(n+ 6)

M6

Q6
µn+6
2 + · · · (5)

In the work of GP, the moment of the leading twist part of the F2 structure function, corrected for target mass
effects, can be written to order 1/Q6 as:

MGP
n (Q2) = An +

n(n− 1)

n+ 2

M2

Q2
An+2 +

n(n2 − 1)(n+ 2)

2(n+ 3)(n+ 4)

M4

Q4
An+4(Q
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+
n(n2 − 1)(n+ 2)(n+ 3)

6(n+ 5)(n+ 6)

M6

Q6
An+6 + · · · , (6)

where An is the n-th moment of a distribution function F (y):

An =

∫ y0

0
dy yn F (y) . (7)

Here the function F (y) is related to the usual quark distribution q(y) by q(y) ≡ yF (y), and the upper limit of
integration y0 is the maximum value at which the quark distribution has physical support. Again in Eq. (6) there is
a mixture between lower and higher moments. Comparing Eqs. (5) and (6), one can show that, at least to O(1/Q6),
the Nachtmann moments are equivalent to the moments of the distribution F (y):

µn
2 ≡ An . (8)

This reflects the fact that the Nachtmann moments are constructed to protect the moments of the structure functions
from target mass effects, thereby allowing them to be identified directly with the moments of the quark distributions.
The F2 structure function appearing in Eqs. (2) and (3) must itself be corrected for target mass effects, and to this

end we will follow the procedure in GP [3], albeit with one exception. While GP write the upper limit of integration
in Eq. (7) as y0 = 1, we will define the upper limit of the integrals as the maximum value allowed by kinematics,
y0 = y(x = 1). Following GP, we can then rewrite Eq. (7) as [3]:

An+2j

(n+ 2j)(n+ 2j − 1)
=

∫ y0

0
dy yn+2j−2 G(y) , (9)

with G(y) given by:

G(y) =

∫ y0

y
dy′ H(y′) =

∫ y0

y
dy′

∫ y0

y′

dy′′ F (y′′) . (10)

This result follows from the fact that:
∫ y0

0
dy yn+2j−2 G(y) =

yn+2j−1

n+ 2j − 1
G(y)

∣

∣

y0

0
−

∫ y0

0
dy

yn+2j−1

n+ 2j − 1

∂G(y)

∂y
, (11)

and because G(0) = G(y0) = 0, one is left with the second term only. Integrating the RHS of Eq. (11) again, we
recover Eq. (9). To obtain the x (or ξ) dependence of the structure functions, we can invert the moment as in GP,
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Approximations to the full TMC

! Rather than the full expressions for the structure functions good approximations 
yield quite acceptable results that can easily be placed on-line:

! Ratio of the fully target mass corrected FTMC(x,Q2) structure functions to the 
leading contributions at Q2 = 1, 4 and 10 GeV2 . The solid curves represent the 
exact results, while the dotted curves use the approximate formulas. 27
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g2(ξ) < (F (0)
2 (ξ)(− ln ξ − 1 + ξ). One then arrives at the following inequality:

FTMC
2 (x, Q2) <

x2

ξ2r3
F (0)

2 (ξ)
[
1 +

6µxξ

r
(1 − ξ) +

12µ2x2ξ2

r2
(− ln ξ − 1 + ξ)

]
.

(58)

The expressions (6µxξ/r)(1−ξ) and (12µ2x2ξ2/r2)(− ln ξ−1+ξ) can be easily evaluated

to obtain an upper bound for the contribution of the non-leading terms. Following the

same line of argumentation one finds for the structure function F3:

FTMC
3 (x, Q2) <

x

ξr2
F (0)

3 (ξ)
[
1 −

2µxξ

r
ln ξ

]
. (59)

While the upper bounds for FTMC
2 and FTMC

3 are strictly satisfied for x and Q2 values

relevant for target mass corrections, these bounds are of limited practical use. For
example, for Q2 = 1 GeV2, Eq. (58) places a limit on the non-leading corrections to be

less than ∼ 65% of the leading term at large x. The actual value is much less, below

∼ 25%. Therefore it is useful to note that

FTMC
2 (x, Q2) #

x2

ξ2r3
F (0)

2 (ξ)
[
1 +

6µxξ

r
(1 − ξ)2

]
(60)

provides a very good approximation of the structure function FTMC
2 (x, Q2). Similarly,

FTMC
3 (x, Q2) can be approximated by

FTMC
3 (x, Q2) #

x

ξr2
F (0)

3 (ξ)
[
1 −

µxξ

r
(1 − ξ) ln ξ

]
. (61)

The magnitude of the non-leading contributions to the target mass correction is

illustrated in Fig. 8, where the ratio of the target mass corrected F2 (top graph) and

F3 (bottom graph) structure functions is shown relative to the leading contribution,

at Q2 = 1, 4 and 10 GeV2. Here FTMC,leading
2 (x, Q2) = (x2/ξ2r3)F (0)

2 (ξ) represents

the leading contribution to the target mass corrected structure function FTMC
2 (x, Q2)

(cf. Eq. (15)), while the corresponding results for the F3 structure function is given

by FTMC,leading
3 (x, Q2) = (x/ξr2)F (0)

3 (ξ). For definiteness, the structure functions are

for charged current neutrino–proton scattering and have been computed in next-to-

leading order of QCD including quark mass effects. However, the results are very robust

concerning variations of these details (process, order, quark mass effects). The dotted

curves in Fig. 8 present the results of the approximate formulas in Eqs. (60) and (61).
As can be seen, the simple approximations are in very good agreement with the exact

results.

The excess over unity depicts the fractional contribution of the non-leading terms.

Clearly, the non-leading contributions to the structure function FTMC
2 are relatively small

and positive. For Q2 = 1 GeV2 they amount about 25%. However, for Q2 = 4 GeV 2

they correct the leading term already by less than 7%, and for Q2 = 10 GeV2 by
less than 3%. The major contribution from the non-leading pieces comes from the

terms proportional to h2 or h3, whereas the part proportional to g2 constitutes a small

correction. These results imply that FTMC
2 (x, Q2) can be approximated in many cases

by FTMC,leading
2 (x, Q2). Moreover, if more precision is needed, the non-leading pieces can
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g2(ξ) < (F (0)
2 (ξ)(− ln ξ − 1 + ξ). One then arrives at the following inequality:

FTMC
2 (x, Q2) <

x2

ξ2r3
F (0)

2 (ξ)
[
1 +

6µxξ

r
(1 − ξ) +

12µ2x2ξ2

r2
(− ln ξ − 1 + ξ)

]
.

(58)

The expressions (6µxξ/r)(1−ξ) and (12µ2x2ξ2/r2)(− ln ξ−1+ξ) can be easily evaluated
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3 (x, Q2) <

x

ξr2
F (0)

3 (ξ)
[
1 −

2µxξ

r
ln ξ

]
. (59)
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]
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As can be seen, the simple approximations are in very good agreement with the exact

results.
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Figure 8. Ratio of the target mass corrected FTMC
2 (x, Q2) (top) and FTMC

3 (x, Q2)
(bottom) structure functions to the leading contributions in Eqs. (15) and (16), at
Q2 = 1, 4 and 10 GeV2. The solid curves represent the exact results, while the dotted
curves have been calculated using the approximate formulas in Eqs. (60) and (61).
A different line style appears to have been used in the black
dotted curve for F3.
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curves have been calculated using the approximate formulas in Eqs. (60) and (61).
A different line style appears to have been used in the black
dotted curve for F3.



Duality and Higher Twist

! Does the fact that duality holds so well for e N resonance scattering compared to 
LO, leading twist DIS results suggest there is little room for higher twist 
contributions for Q2 > 1 GeV2 and x < 0.65??

! Multiple studies of this available in the literature and all seem to agree with 
the above statement.  

!  Using Giessen fit to e-N scattering – F2
eN (  )      

for values of Q2 indicated on spectra compared to     
LO DIS QCD fit at Q2 = 10 GeV2
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FIG. 5: Comparison of the Rein-Sehgal structure functions at Q2 = 0.4, 1 and 2 GeV2 with the appropriate scaling functions
at Q2

DIS=10 GeV2. In the first row xF1, F2 and xF3 structure functions for CC neutrino-proton scattering are plotted. In the
second row the structure functions for CC neutrino-neutron scattering are shown.

In the quantitative analysis we define ratios of two integrals over the resonance region:

R
(

f,Q2
R; g,Q

2
D

)

=

∫ ξmax

ξmin

dξ f(ξ, Q2
R)

∫ ξmax

ξmin

dξ g(ξ, Q2
D)

. (40)

Quantitative test of Quark-Hadron Duality:
Ratio of integrals over a finite   interval

e - Nucleon
! Ratio of the strength of the SIS to DIS region.  Ideal Duality I = 1.0 .

! Using Giessen fit to e-N scattering – F2
eN (  ) for values of Q2 indicated on 

spectra compared to LO DIS QCD fit at Q2 = 10 GeV2. Value of integral I(Q2).
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This in turn would allow us to relate DIS structure functions to resonance form factors.

Some three decades later there was considerable accumulation of charged lepton DIS

studies at multiple laboratories with nucleon structure functions well measured over a

broad range in x,Q2. Many experimental tests had proclaimed the success of QCD, and

a new examination of duality with Je↵erson Lab resonant production experiments was

begun. An early Je↵erson Lab 6 GeV era (E00-116??) measurement [4] showed that

duality was clearly observed Figure 1 with an indication that for Q2  0.5GeV 2 the

data resembles a valence like curve. The experimental and theoretical study of duality

proceeded relatively smoothly for e-N and even for e-A interactions and there is now

visual evidence that duality holds for F p

2 , F
p

1 , F
p

L
, F n

2 , F
D

2 , FC

2 , F Fe

2 and FAu

2 .

Duality HOLDS in electron–nucleon scattering!
What does that mean?

◆ If you take F2 determined from a QCD fit to DIS data and extrapolate down in ξ
- a form of xBj that compensates for low-Q phenomena.  The extrapolation runs 
approximately through the middle of the resonances.

41

UGent.eps

Fep, en
2 : Duality HOLDS in electron–nucleon scattering

Duality holds for both proton and deuteriuim targets (=for neutron target)
Niculescu, PRL85

JLAB: recent experimental data on F2 of
the reactions ep � eX , eD � DX in the
resonance region

solid curve — global fit to the world’s DIS
data by NMC collaboration

The data at various values of Q2 and W
average to a smooth curve if expressed
in terms of �.

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 5 / 22
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Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

�B =
Q2 +

q

Q4 + 4m2
qQ2

2mN�(1+
p

1+Q2/�2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable �

� = lim
mq�0

�B =
2Q2/2mN�

(1+
p

1+Q2/�2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding � in powers of 1/Q2 at high Q2 gives the variable 2mN�+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
�

� 1
x

„

1+
m2
Nx2
Q2

«

=
2mN� +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get � � 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 6 / 22
UGent.eps

Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

�B =
Q2 +

q

Q4 + 4m2
qQ2

2mN�(1+
p

1+Q2/�2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable �

� = lim
mq�0

�B =
2Q2/2mN�

(1+
p

1+Q2/�2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding � in powers of 1/Q2 at high Q2 gives the variable 2mN�+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
�

� 1
x

„

1+
m2
Nx2
Q2

«

=
2mN� +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get � � 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)

Olga Lalakulich (Ghent University, Belgium) Duality in Neutrino Reactions NuInt 07 6 / 22Figure 1. Comparison of the series of resonances measured by E00-116(??) at
the indicated Q2 compared to the extrapolated DIS measurement from the NMC
collaboration at 10 GeV 2

However, with the much more precise Je↵erson Lab data, there should be an

improved method to test duality precisely. A possible solution is to quantify the degree

to which duality is satisfied by defining the ratio of integrals over structure functions

from the resonance and DIS regions:

I|(Q
2, Q2

DIS) =

R
⇠max

⇠min
d⇠FRES

j (⇠, Q2)
R

⇠max

⇠min
d⇠FDIS

j (⇠, Q2
DIS)

(1)

The integrals use the Nachtmann variable (xBjorken ⌘ x) ⇠(x,Q2) = 2x

1+
p

1+4x
2
M

2
/Q

2

and the integration over the resonance region is defined as typically Wmin = M + m⇡

and Wmax = 2.0 GeV. For perfect quark-hadron duality the value of I would be 1.0.

Using this new measure of agreement with quark-hadron duality for eN scattering

the authors of reference [5] used the full GiBUU model [6] that has been shown to
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DIS=10 GeV2. In the first row xF1, F2 and xF3 structure functions for CC neutrino-proton scattering are plotted. In the
second row the structure functions for CC neutrino-neutron scattering are shown.

In the quantitative analysis we define ratios of two integrals over the resonance region:

R
(

f,Q2
R; g,Q

2
D

)

=

∫ ξmax

ξmin

dξ f(ξ, Q2
R)

∫ ξmax

ξmin

dξ g(ξ, Q2
D)

. (40)
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In the quantitative analysis we define ratios of two integrals over the resonance region:

R
(

f,Q2
R; g,Q

2
D

)

=

∫ ξmax

ξmin

dξ f(ξ, Q2
R)

∫ ξmax

ξmin

dξ g(ξ, Q2
D)

. (40)

Stress the importance
of including the 
non-resonant 
pion production!
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The leptonic current is defined as:

J µ
lepton = ū(k′)γµ(1− γ5)u(k). (2)

In the RS model the leptonic mass is set to be zero. In this limit

qµJ µ
lepton = 0. (3)

One can introduce the basis of three vectors of length ±1 orthogonal to qµ:

eµL =
1√
2
(0, 1,−i, 0),

eµR =
1√
2
(0,−1,−i, 0),

eµS =
1

√

Q2
(q, 0, 0, ν).

Correspondingly, the leptonic tensor can be decomposed as:

Lµν = kµk′ν + k′µkν − gµνk · k′ − iεµνκλkκk
′

λ = (4)

=
∑

α,β∈(S,L,R)

Mαβeµα(e
ν
β)

∗. (5)

When we calculate the contraction of the leptonic tensor with the hadronic tensor

Wµν =

(

−gµνW1 +
pµpν
M2

W2 − iεµναβpαqβ

2M2
W3

)

, (6)

(M is the nucleon mass) we find that

LµνWµν = Lµν
diagWµν , (7)

where

Lµν
diag = A2eµS(e

ν
S)

∗ +B2eµL(e
ν
L)

∗ + C2eµR(e
ν
R)

∗. (8)

A2, B2, C2 are Lorentz scalars which can be evaluated in the LAB frame:

A2 = Lµνe
µ
S(e

ν
S)

∗ =
Q2

2q2
(

(2E − ν)2 − q2
)

, (9)

B2 = Lµνe
µ
L(e

ν
L)

∗ =
Q2

4q2
(2E − ν + q)2, (10)

C2 = Lµνe
µ
R(e

ν
R)

∗ =
Q2

4q2
(2E − ν − q)2. (11)

SIS DIS

UGent.eps

Scaling variables for duality

The most general scaling variable includes target mass correstion and finite quark
mass

ξB =
Q2 +

q

Q4 + 4m2
qQ2

2mNν(1+
p

1+Q2/ν2)
Barbieri, Ellis, Gaillard, Ross

Nachmann scaling variable ξ

ξ = lim
mq→0

ξB =
2Q2/2mNν

(1+
p

1+Q2/ν2)
=

2x
(1+

q

1+ 4m2
Nx2/Q2)

Expanding ξ in powers of 1/Q2 at high Q2 gives the variable 2mNν+m2
N

Q2 , found
emperically in 1970 by Bloom and Gilman and used in their pioneer work on duality

1
ξ
≈
1
x

„

1+
m2
Nx2
Q2

«

=
2mNν +m2

N
Q2

At very high Q2, neglectingm2
N/Q2, we get ξ ≈ 2x

1+1 = x - Bjorken variable
(see Melnitchouk, Ent, Keppel, Phys.Rep. 406)
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To perform the extrapolated fits for Neutrinos we 
need MINERvA (ME) SIS and DIS Analyses

! SIS – 1.5 < W < 2.0 GeV – First Inclusive Cross sections in this 
restricted W region ds/dQ2, ds/dpµt  and ds/dpµz for both n and n 
completed, ds/dx and ds/dx underway. 

! DIS – (W>2 GeV and Q2 > 1 GeV2):  ds/dx and ds/dEn in nuclear 
targets (C, CH, Fe AND Pb) for nuclear ratios with both n and n

! DIS - (W>2 GeV and Q2 > 1 GeV2): ds/dxdy for n and n.  These 
expressions can be included directly in (nCTEQ) global fits (reduced 
Q2 and W cuts) to study higher-twist with neutrinos.
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The SIS and Overall Landscape vs W
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C. Bronner- 2018

28W distributions
Fe, Eν=6.0 GeV

Neutrino Anti-neutrino
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6 GeV n on Fe 

5.4.0
18.02.1
2.12.10

27W distributions
Ar, Eν=2.5 GeV

Neutrino Anti-neutrino

2.5 GeV n on Ar 

Experimental 
SIS.

20Comparison to other generators
Hadronic invariant mass

W>1.7 GeV

➢ Evolution from 2018: significant changes only for GENIE
➢ NEUT has some small change of the relative normalizations of the different 

regions

2018 version 2022 version

CB @ NuSTEC SIS/DIS workshop

5.4.0

18.02.1

2.12.10

6 GeV n on Fe 

Evolution from 2018: significant changes 
   only for GENIE resonances & Res-DIS transition

Obvious mix of resonant and SIS meson 
    production in experimental SIS W range.

Significance for DUNE  -  45 % of nµ CC events 
    have W > 1.5 GeV.
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