Theory summary

Artur M. Ankowski University of Wrocław

NuInt 2024, April 15–20, 2024, São Paulo, Brazil

Theory at NuInt'24

• ~20 theory talks

Nuclear effects in electron and neutrino scattering in a variety of approaches, pion production, eta production, tau neutrino cross sections, BSM physics, ...

~10 generator talks

GiBUU, NuWro, GENIE, NEUT, ACHILLES, HE interactions, gamma rays, INCL + ABLA, NUISANCE

Many posters

I won't be able to cover them, sorry!

What can go wrong?

- Rate of appearance and disappearance
 - − Is the v_e rate higher because of a larger value of δ_{CP} , or is your model for $v_e \rightarrow v_\mu$ wrong?
 - Is the increased rate of v_{μ} due to $sin^2\theta_{23}$, or a larger cross section?

Impact of systematics at the FD Neutrino cross-section uncertainties contribute ~3% to number of v_e on NOvA and T2K M. Elkins, T. Nosek, Neutrino 2020 poster

Clarence Wret

UNIVERSITY OF OXFORD		Event counts at the FDs				
	Sample	TZK		Hyper-Kamiokande	DUNE	
	$N_{\mu}^{ m rec}$ FHC	318	211	10000	7000	
	$N_{\mu}^{\rm rec}$ RHC	137	105	14000	3500	
	$N_e^{\rm rec}$ FHC	108	82	3000	1500	
	$N_e^{\rm rec}$ RHC	16	33	3000	500	

- HK and DUNE will have enough events to be limited by the ~3% (anti-)v_e uncertainty
- Current experiments at the 3-5% level uncertainties*

OXFORD

What do I worry about?

- Will (anti-)v_e uncertainties fall below 2-3%?
 - Critical for δ_{CP} , mass ordering, for both **atmospheric** and **accelerator** experiments, and **MiniBooNE LEE**
- Do we understand transition, SIS and DIS interactions sufficiently for DUNE?
 - Worry that the day DUNE ND turns on, it'll show how poorly we describe these samples
- Will we understand nuclear effects in ⁴⁰Ar nuclear in 10 years time?
- Will we understand neutron final-state interactions sufficiently to use them for e.g. energy estimators and tagging events?
- v_τ uncertainties for atmospheric neutrinos and mass ordering sensitivity
- How do we diagnose low momentum pion modelling

Clarence Wret

Cross sections' ratio for neutrinos

Cross sections' ratio for antineutrinos

Cross sections' ratio for neutrinos

Cross sections' ratio for antineutrinos

Crash course

Spectral function

- Emphasis on the initial state (shell structure & SRC)
- Interaction (1 or 2 nucleons) factorized
- Final-state interactions treated as corrections
- Inclusive and exclusive cross sections
- Relativistic final states

Quantum Monte Carlo

- Emphasis on the nuclear dynamics
- Interaction not factorized
- Initial and final-state interactions treated consistently
- Nuclear responses and inclusive cross sections
- Relativistic effects treated as corrections

Relativistic mean field

- Emphasis on relativistic dynamics of the interaction
- Interaction not factorized
- Nucleus treated as a potential
- Initial and final-state interactions treated consistently
- Exclusive and inclusive cross sections
- Effects of interactions need to be added *ad hoc*
- SRCs treated as corrections

Multinucleon final states

Two (or more) nucleons in the final state may come from

- initial-state correlations
- two-body reaction mechanisms, such as meson exchange currents (MEC)
- final-state interactions (intranuclear cascade)

We cannot distinguish these processes, so they would need to be added at the level of amplitudes, and they interfere.

Shimizu & Faessler, Nucl. Phys. A 333, 495 (1980) Alberico *at al.*, Ann. Phys. 154, 356 (1984)

Importance of fully relativistic kinematics

A.M.A. & O. Benhar, PRC 83, 054616 (2011)

Sizable differences between the **relativistic** and **nonrelativistic** cross sections for neutrino energies *O*(500 MeV).

Importance of fully relativistic kinematics

At $|q| \sim 500$ MeV, semi-relativistic result 5% lower than the relativistic one.

Coulomb distortion effects

"These effects generally turn out to be sizable even for light nuclei ... and introduce in the components of the nuclear response a dependence on all the kinematic variables of the incoming and outgoing electrons which in principle invalidates the Rosenbluth separation and makes the experimental determination of R_L and R_T **extremely complicated**.

•••

[W]hen L/T separation is obtained from the data at large scattering angles, small uncertainties in the cross-section measurement can lead to relatively large uncertainties in the extracted value of R_L "

Boffi et al., Electromagnetic response of atomic nuclei (Clarendon, Oxford, 1996)

What did we learn?

Coupled cluster theory

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger}a_j^{\dagger}\dots a_k^{\dagger}|0\rangle$

Include **correlations** through e^T operator

 $\mathcal{H}_{N}e^{T}|\Psi\rangle = Ee^{T}|\Psi\rangle$

approximation through

✓ Controlled

Chiral expansion for ⁴⁰Ca (Electromagnetic responses)

0.200 ΔNLO_{G0}(450) 0.175 ΔΝΝLO_{GO}(450) 0.150 [MeV^{_1}] 0.125 0.100 a = 300 MeV/c(3) 3) 0.075 0.050 0,025 0,000 20 40 60 100 120 140 160 80 ω [MeV] 0.07 LIT-CC; ANLOco(450) ⁴⁰Ca 0.06 LIT-CC: ANNLO_{G0}(450) - ^{0,05} √ _A0.04 0.03 (m) [Wa 0.02 q = 300 MeV/c0.03 0.00 25 100 125 150 175 200 50 75 225 ω [MeV]

- ✓ Two orders of chiral expansion
- ✓ Convergence better for lower q (as expected)
- ✓ Higher order brings results closer to the data

¹⁶O spectral function

Error propagation to cross sections

 $\nu_{\mu} + {}^{16}\text{O} \rightarrow \mu^- + X$

Joanna Sobczyk

JES , S. Bacca, Phys.Rev.C 109 044314

Generalized contact formalism

- Nuclear short-range correlations beyond mean-field effects
- Generalized Contact Formalism: $\Psi(r_1, r_2, ..., r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$
 - · Consistent and comprehensive description of short-range correlated pairs at leading order
 - Accurate description of large-momentum transfer electron scattering reactions
- Short-range expansion:
 - Systematic framework with organized subleading contributions
 - Valid for larger distances / lower momenta
 - Various observables can be described (kinetic and potential energy, $0\nu\beta\beta,...$)
- 3N SRCs

Ronen Weiss

Meson exchange currents

• We include **one-pion exchange effects** by incorporating **two-body meson-exchange currents** with a final paticle-hole state.

$$J_{had}^{\mu} = J_{had,1b}^{\mu} + J_{had,2b}^{\mu}$$

• The **1p-1h excitation** occurs when one of the outgoing nucleons of the two-particle two-hole interaction remains bound to the nucleus.

⁴⁰Ca electromagnetic inclusive cross section

Data: discovery.phys.virginia.edu/research/groups/ges-archive/data/40Ca.html

NuInt 2024 - Sao Paulo, Brasil

Ei=347 Mev, θ_l=90

Tania Franco Muñoz

 $^{12}\text{C-}\nu_{\mu}$ inclusive cross section

NuInt 2024 - Sao Paulo, Brasil

Tania Franco Muñoz

Our nuclear framework

- \rightarrow Nucleons are solutions to the Schrödinger equation in a **mean-field potential**
- → We calculate single-particle states with the Hartree-Fock procedure and SkE2 NN force
- \rightarrow We describe outgoing nucleons as **continuum states** of the nuclear potential

Short-range correlations

→ Nucleons with strongly overlapping wave functions for a short period of time

$$\hat{\mathcal{J}}_{\nu}^{\mathrm{eff}} \simeq \sum_{i=1}^{A} \hat{\mathcal{J}}_{\nu}^{[1]}(i) + \sum_{i < j}^{A} \hat{\mathcal{J}}_{\nu}^{[1], \mathrm{SRC}}(i, j)$$

with

$$\hat{\mathcal{J}}_{\nu}^{[1],\text{SRC}}(\mathfrak{i},\mathfrak{j}) = \left[\hat{\mathcal{J}}_{\nu}^{[1]}(\mathfrak{i}) + \hat{\mathcal{J}}_{\nu}^{[1]}(\mathfrak{j})\right]\hat{\mathfrak{l}}(\mathfrak{i},\mathfrak{j})$$

 $\label{eq:linear} \begin{array}{l} \rightarrow \ The \ correlation \ operator \ \hat{l}(i,j) \ includes \ central, \\ tensor, \ and \ spin-isospin \ correlations \end{array}$

- → First corrections to the **independent-particle model** picture for 1p1h
- → Two-body currents also leading to two-nucleon knock-out reactions

Ka	jetan	Niew	vczas

NuINT 2024

Consistent modeling of two-body currents: electron scattering

→ Coherent sum of SRC and MEC enhances our predictions

Kajetan Niewczas	
------------------	--

NuINT 2024

JLab Hall A data

 \rightarrow Combining variation in given d.f. provides flexibility in describing QE and Δ peaks

Kajetan Niewczas	NuINT 2024	April 16th 2024
------------------	------------	-----------------

Inclusive T2K data

Kajetan Niewczas

April 16th 2024

Short-time approximation

S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, and R. B. Wiringa PRC101(2020)044612

Describe electroweak scattering from A>=12 without losing two-body physics, account for exclusive processes, Incorporate relativistic effects

Response functions

$$egin{aligned} R_lpha(q,\omega) &= \sum_f \delta(\omega+E_0-E_f) |\langle f|O_lpha(\mathbf{q})|0
angle|^2 \ R_lpha(q,\omega) &= \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| rac{O_lpha(\mathbf{q})e^{-iHt}O_lpha(\mathbf{q}) ig| \Psi_i ig
angle \end{aligned}$$

$$\begin{split} O^{\dagger}e^{-iHt}O = & \left(\sum_{i} O_{i}^{\dagger} + \sum_{i < j} O_{ij}^{\dagger}\right)e^{-iHt}\left(\sum_{i'} O_{i'} + \sum_{i' < j'} O_{i'j'}\right) \\ = & \sum_{i} O_{i}^{\dagger}e^{-iHt}O_{i} + \sum_{i \neq j} O_{i}^{\dagger}e^{-iHt}O_{j} \\ & + \sum_{i \neq j} \left(O_{i}^{\dagger}e^{-iHt}O_{ij} + O_{ij}^{\dagger}e^{-iHt}O_{i} \\ & + O_{ij}^{\dagger}e^{-iHt}O_{ij}\right) + \dots \end{split}$$

The sum over all final states is replaced by a two nucleon propagator

Lorenzo Andreoli

Cross sections results for ^{12}C

Nonrelativistic calculations

34

Benchmarking INCs with RDWIA calculations for Argon

[In preparation]

Comparison of T_p dependence in different INCs

Ratio OUT/INPUT

- $\rightarrow\,$ independent of INPUT in INC
- = 'INC Transparency'
- NEUT & ACHILLES: - Low-T_p differences
- NuWro & ACHILLES:
 Treatment of SRCs

Superscaling

Arrington et al., PRL 82, 2056 (1999)

Superscaling

Introduction Formalism Results Conclusions Results - ${}^{12}C(e,e')$

Introduction Formalism Results Conclusions Results-T2K

Paloma Casalé

Introduction Formalism Results Conclusions Results-MINER ν A

Paloma Casalé

Model: SuSAv2-inelastic

The contribution analysed depends of the limits of the integral and the parametrization used

• TrueDIS (Deep inelastic scattering)

 $W_x^{min} = 2.1 \text{ GeV}; \quad W_x^{max} = m_N + \omega - E_s$

Bodek-Ritchie/ Bosted-Christy/ Parton Distribution Function

• RES (Resonances)

 $W_x^{min} = m_N + m_{\pi}; \ W_x^{max} = 2.1 \ GeV$

Dynamical Coupled Channels

SoftDIS (Deep inelastic scattering in the resonance region)

 $W_x^{min} = m_N + m_\pi; \quad W_x^{max} = 2.1 \text{ GeV}$

Dynamical Coupled Channels and Bodek-Ritchie/Bosted-Christy Jesus Gonzalez-Rosa

Results: Electron scattering

[J. Gonzalez-Rosa et al.,

(2023)].

Phys. Rev. D 108, 113008

Jesus Gonzalez-Rosa

Results: T2K

Results: MicroBooNE

MicroBooNE CC $u_{\mu} < E_{
u_{\mu}} > \sim 0.8 \; GeV$

Jesus Gonzalez-Rosa

Results: ArgoNEUT

ArgoNEUT CC $v_{\mu} < E_{\nu_{\mu}} > \sim 9.6 \ GeV; \ CC \overline{\nu}_{\mu} < E_{\nu_{\mu}} > \sim 3.6 \ GeV$

Jesus Gonzalez-Rosa

Hydrogen–Deuterium Comparison Summary

LQCD "prediction": deuterium fits underestimate axial form factor at high Q^2 Unphysical deuterium fit degerancy between floating normalization, axial form factor *Independent of norm degeneracy*, hydrogen & deuterium shapes mutually incompatible We need more modern hydrogen data!

Aaron Meyer

Free Nucleon Cross Section

LQCD prefers 30-40% enhancement of ν_{μ} CCQE cross section

recent Monte Carlo tunes require 20% enhancement of QE

[Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]

Sensitive to vector form factor tension with improved precision [Phys.Rev.D 102 (2020)] [Nucl.Phys.B Proc.Suppl. 159 (2006)] (red uncertainty vs black-blue difference)

 \implies vector form factors will limit precision in near future

Aaron Meyer

Vector Form Factors - Proton/Neutron

Large tension in proton magnetic form factor

Aaron Meyer

σ per interacting nucleon for the CC neutrino (left) and antineutrino (right) from ⁴⁰Ar nuclear target

AF, MSA, SKS, Paper in preparation

Atika Fatima

MicroBooNE η production result

 $\langle \sigma \rangle = (3.22 \pm 0.84 \pm 0.86) \times 10^{-41} \text{ cm}^2/\text{nucleon}$

- $\langle \sigma \rangle_{\rm free} = 1.87 \times 10^{-41} \, {\rm cm}^2/{\rm nucleon}$ • $\langle \sigma \rangle_{^{40}{\rm Ar}} = 1.78 \times 10^{-41} \, {\rm cm}^2/{\rm nucleon}$
- GENIE $v2_{12_{10}}$: 4.63 × 10⁻⁴¹ cm²/nucleon
- GENIE v3_00_06G18_10a_02_11a: 4.61 × 10⁻⁴¹ cm²/nucleon
- NuWro 19.02.1: $5.45 \times 10^{-41} \text{ cm}^2/\text{nucleon}$
- NEUT v5.4.0: $11.9 \times 10^{-41} \text{ cm}^2/\text{nucleon}$

Atika Fatima

MK model

- The MK model is applicable in the resonance region (W < 2.0 GeV), covering both resonance and nonresonant interactions.
- It utilises a form-factor model (Meson Dominance) that complies with the unitary condition, respects CVC and PCAC, and is consistent with QCD principles. Consequently, the model provides accurate predictions across both low and high Q² regions.
- All form factors (neutron, proton, CC, and NC) are determined through a joint fit incorporating approximately 50,000 data points on electron, photon, pion, and neutrino scattering data, providing covariance matrix.

Highlight 1 (neutrino vs anti-neutrino)

 By employing an advanced model for the form factors and incorporating data from both neutrino and anti-neutrino interactions, we can ensure a reliable prediction for both types of interactions.

Highlight 1 (neutrino vs anti-neutrino)

Integrated cross section

Minoo Kabirnezhad

Highlight 3: Low Q² region

- The model is designed to address the low Q² region, where existing models struggle to predict empirical data:
- This ANL data is not included in the fit.
- The proton/deuteron ratio is similar to neutron/deuteron in electron scattering measurements.
- This ANL data on deuterium is utilised to fit the axial form factor in event generators.

Total cross sections

Results with $M_{\pi N} < 1.4 \text{ GeV}$, 0.6 Δ and Δ plus 2nd resonance _{0.4} region (old ANL data)

Alejandro Mariano

•We use CMS approach previously implemented to get, strong and weak parameters for the Δ , with $M_{\pi N} < 1.4$ GeV.

• The effect of adding 2nd resonance region depends on the channel, for $E_{\nu} = 3.0, 1.5, 1.5$ GeV we get a 4%, 17% and 10% of contribution respectively.

Comparison with reanalyzed ANL and BNL

- The increase in the cross section due additional resonances is persistent and the best working approach is CMS as before. We will use χ^2/dof in spite we are not fitting anything.
- We have also shown results with variable widths, which are not consistent without vertex corrections, since there are works with this approach. Also we show results with the exact propagator, which has a more complex structure and one should consistently include the rescattering in the total amplitude.

Alejandro Mariano

Model A (bootstrap)

Krzysztof Graczyk

Model B (MC dropout)

https://github.com/bekowal/CarbonElectronNeuralNetwork

Consistency of the data normalization

Abbrev.	Norm.	model A	model B
	uncert.	λ_k	$\lambda_k(p=0.01)$
Arri1995	4.0%	1.01	1.02
Arri1998	4.0%	1.00	0.96
Bagd1988	10.0%	1.03	1.06
Bara1988	3.7%	1.01	0.98
Barr1983	2.0%	0.99	1.02
Dai2018	2.2%	1.00	0.97
Day1993	3.4%	0.99	0.98
Fomi2010	4.0%	1.01	0.96
O'Con1987	5.0%	1.02	1.01
Seal1989	2.5%	1.02	1.04
Whit1974	3.0%	0.93	0.93

A tension between Whit1974 and the rest of datasets?

High-energy studies

- Alfonso Andres Garcia Soto: High-energy neutrino-matter interaction cross-sections in neutrino event generators
- Farhana Zaidi: Nuclear medium effects in v_{τ} -A scattering at DUNE energies
- Jorge Morfin: The Physics of SIS target mass correction and higher twist
- Yu Seon Jeong: Neutrino Cross Sections for collider neutrinos

Summary

- The success of the neutrino-oscillation program (DUNE and Hyper-Kamiokande) requires reliable cross sections.
 - The requirement for precision will steadily increase.
- Theory and generator developments needed for many years to come.
- Plenty of new experimental data need to be understood.
 - Ye need to grow as a community to meet the demands of the oscillation program and ensure its full potential is realized.

Our needs

- Inclusive and exclusive cross sections for electron scattering on nuclear targets, especially argon and oxygen. Both data and theory predictions.
 - Neutron multiplicities and spectra for argon. Proton knockout from titanium may be a simple way forward.
- The transition from resonance production to deep-inelastic scattering requires our attention. The problem is challenging, particularly relevant for DUNE.
- More efficient theory implementation in Monte Carlo generators.
- New measurements from the short-baseline program will shed new light on intranuclear cascades. Expect the unexpected!
- Uncertainties and regions of validity for the theory predictions.

Thank you!