QE-Like Interactions From MINERvA: What's v?

Daniel Ruterbories on behalf of the MINERvA collaboration April 16th, 2024

The MINERvA Experiment

- Study neutrino-nucleus scattering at a few GeV
 - Measure the effects of the nuclear environment on neutrino scattering
 - Improve understanding of neutrino-nucleus cross section model by working with generators
 - Benefits current and future neutrino oscillation experiments

Experimental Apparatus

arXiv:1305.5199

The NUMI beam

What is QE-Like? How are they selected?

Initial Interaction

Final State Interactions (FSI)

- Signal <-> Background migrations
- Energy sharing between pions and nucleons
- Particles in the detector, and thus energy deposited, is modified
- Define Signal by topology – no pion/kaons, only nucleons

NuInt 2024

Reconstruction and selection strategy

Look for Michel electrons at later times to veto π^+

at
$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\mu_{\nu}}) \longrightarrow \qquad \mu^{-} \to e^{-}\bar{\nu_{e}}\nu_{\mu}$$

 $\mu^{+} \to e^{+}\nu_{e}\bar{\nu_{\mu}}$

Background Constraints

QE-Like in 3D Phys.Rev.Lett. 129 (2022) 2, 021803

QE-Like in 3D

Phys.Rev.Lett. 129 (2022) 2, 021803

$$E_{\nu,QE}-E_{\mu}$$

$$q_0^{(\text{QE})} \equiv \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(E_\mu - p_\mu \cos \theta_\mu)E_\mu}{2(m_n - E_b) - E_\mu + p_\mu \cos \theta_\mu}$$

- Alternative variables akin to how oscillation experiments get at E_n
- Similar trends and observations when compared to the $p_{t,\mu}$ vs $p_{||,\mu}$ vs ΣT_p result
- Major question: what about at lower average beam energies?

Nulnt 2024

<3GeV> result

NuInt 2024

Redone <6GeV> result

NuInt 2024

Daniel Ruterbories (Rochester)

14

Nulnt 2024

Daniel Ruterbories (Rochester)

NuInt 2024

NuInt 2024

Daniel Ruterbories (Rochester)

17

Average Recoil

• Similar trends for <3GeV> and <6GeV> datasets – prefer a lower average recoil

energy

• A significant difference between the two datasets at the lowest P_t

Nulnt 2024

Conclusions

- Low P_t has over prediction at higher ΣT_p
- Interesting peak differences at moderate P_t
- At High P_t, low ΣT_p continue to observe MC-data differences. A region with have large FSI effects.
- Resonant pion production contributes a larger fraction of events at <6GeV> compared to <3GeV>
- There is a significant different in average recoil between the two datasets at the lowest P_t

Move from an inclusive QE-Like Transverse Kinematic Imbalance (TKI)

Move from an inclusive QE-Like Transverse Kinematic Imbalance (TKI)

δP₊, (GeV/c)

Question: What is the peak position, width, and symmetry as a function of

 $\delta_{\text{pt,y}}$

 $\delta_{\rm pt,x}$ vs $\delta_{\rm pt,y}$

MINERvA data
 MINERvA Tune v1.0.1
 QELike-QE
 QELike-Pions
 QELike-2p2h
 2p2h without fit
 -0.30 < δP_{tx} < -0.20

Can we do more?

- A lot of the metrics are QE centric with a non-QE "background"
- Using the data and extrapolating using the model we can constrain this "background"
- Extract a scale factor per P_{t,μ} bin
 - Can apply to other results for cross checks and extracting QE-only results

Constraining Non-QE Use $\delta_{\text{pt,y}}$ tail to constrain

Scale factor PER $P_{t,\mu}$ bin

More?

 Using a formalism from *Eur.Phys.J.C* 79 (2019) 4, 293 from Arie Bodek and Tejin Cai explore shifting the proton-muon system by energies related to the Coulomb potential, U_{fsi}, and binding energy

TABLE I. Calculated energy corrections to the final state leptons and hadrons from the GENIE generator for QE neutrino scattering on ${}^{12}C$, $\Delta_{\text{GENIE}}^{\text{C}} = 25$ MeV, $E_x = 10.1$ MeV. Other interaction channels are not altered.

Correction	$\begin{split} E^{P} &= E^{P}_{\text{GENIE}} + \delta^{P} \\ \delta^{P}(\text{MeV}) \end{split}$	$E^{\mu} = E^{\mu}_{ m GENIE} + \delta^{\mu} \ \delta^{\mu}({ m MeV})$	GENIE baseline shift, $\langle \delta^{\mu} \rangle, \langle \delta^{\mu} \rangle$ (MeV)	QE baseline shift $\langle \delta p_{\rm Ty} \rangle ({\rm MeV}/c)$
0: Default (no corrections)	0	0	0,0	0
1: U_{opt} only (w/ $E_x \& \Delta_{\text{GENIE}}^{\text{C}}$)	$\Delta_{\text{GENIE}}^{\text{C}} - U_{\text{opt}} $	$ U_{\rm opt} - E_x$	22.7, -7.8	29.4
2: U_{opt} and V_{eff} (w/ $E_x \& \Delta_{GENIE}^C$)	$\Delta_{\mathrm{GENIE}}^{\mathrm{C}} - U_{\mathrm{opt}} + V_{\mathrm{eff}}^{\mathrm{P}} $	$ U_{\rm opt} - E_x - V_{\rm eff} $	25.8, -10.9	33.9

Post constraint – two shifts as example

Scan over parameters and find optimal solutions globally and as a function of $P_{t,\mu}$

Pros/Cons of Cross Section and Reconstructed Spaces

Cross Section Space

- Pros
 - Models live in this space easy to apply
- Cons
 - Result depends on efficiency correction and unfolding of Non-QE models

Reconstructed Space

- Pros
 - Data driven shapes with little MC influence
 - Post subtraction depend on modeling of single process
- Cons
 - Requires forward folding (smear) model through a detector model
 - Harder to work back to the model

Should explore both. Qualitatively they should agree if the pieces are correct

Reconstructed Space Purple (-) to δ^{p} (+) to δ^{μ}

Pink (+) to δ^{p} (-) to δ^{μ}

MINERvA Preliminary

- k_x
- By subtracting Non-QE but QE-Like events we can access struck nucleon momentum components

- Modify standard TKI selection to cut on |d_{p,tx}>0.3 GeV|
 - Kx in the +/- 0.3 GeV region is the primary QE peak
 - Including beyond introduces strong negative bins when subtracting QELike non-qe
 - Problem for unfolding!
 - Redo $\delta_{pt,y}$ tail fit for modified selection

k_x

k_x (GeV/c)

Daniel Ruterbories (Rochester)

Approval

Looking to the future

- Publication writing in progress
- More work to be done with additional two and three dimensional combinations for TKI results
- Efforts to use a higher statistic <3GeV> sample?
 - More dimensions? Compare between datasets?

Conclusions

- New triple differential result using both datasets are coming soon – similar MC-Data differences as seen in Phys.Rev.Lett. 129 (2022) 2, 021803 with additional energy dependent comparisons
- New double differential TKI results comparing
 P_{t,µ} against a variety of variables
- New using $\delta_{pt,y}$ to constrain non-QE but QE-Like events a pure QE sample is extracted
- New direct probe of k_x of the struck nucleon

Backups

NuInt 2024

Daniel Ruterbories (Rochester)

Uncertainty $\delta_{\text{pt,y}}$

Uncertainty $\delta_{\text{pt,x}}$

