16/04/24

Mesonless measurements at T2K

Stephen Dolan for the T2K Collaboration

stephen.joseph.dolan@cern.ch

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

The ND280 Near Detectors

Stephen Dolan

The ND280 Near Detectors

The Near Detector Complex SMRD UA1 Magnet Yoke Major upgrade to T2K's ND280 POD ECal Barrel ECal detector just completed, details in later slides + a dedicated talk! HA-TPC Super-FGD More details from Ulysse on Friday! HA-TPC 6 Ger WAGASCI + BabyMIND INGRID $E_{\nu}^{peak} \sim 1.1 \ GeV$ PARC

Stephen Dolan

Neutrino interactions at T2K

Percentages show contribution to ν_{μ} CC interactions at the near (before oscillation) and far (after oscillation) detector sites for $E_{\nu} < 2$ GeV simulated with NuWro

Stephen Dolan

Percentages show contribution to ν_{μ} CC interactions at the near (before oscillation) and far (after oscillation) detector sites for $E_{\nu} < 2$ GeV simulated with NuWro

Stephen Dolan

Neutrino interactions at T2K

Percentages show contribution to ν_{μ} CC interactions at the near (before oscillation) and far (after oscillation) detector sites for $E_{\nu} < 2$ GeV simulated with NuWro

Stephen Dolan

Neutrino interactions at T2K

the near (before oscillation) and far (after oscillation) detector sites for $E_{\nu} < 2$ GeV simulated with NuWro

Stephen Dolan

- 1. Relative CC0 π contribution of CCQE and other processes
 - So we know how often we mis-reconstruct E_{ν}

- 1. Relative CC0 π contribution of CCQE and other processes
 - So we know how often we mis-reconstruct E_{ν}
- 2. Initial state nucleon momentum and energy
 - So we know how wide (and biased) our CCQE E_{ν} reconstruction is

- 1. Relative CC0 π contribution of CCQE and other processes
 - So we know how often we mis-reconstruct E_{ν}
- 2. Initial state nucleon momentum and energy
 - So we know how wide (and biased) our CCQE E_{ν} reconstruction is
- 3. Neutrino energy dependence of cross sections and their differences on Carbon and Oxygen
 - So we know how to extrapolate from our ND to our FD

- 1. Relative CC0 π contribution of CCQE and other processes
 - So we know how often we mis-reconstruct E_{ν}
- 2. Initial state nucleon momentum and energy
 - So we know how wide (and biased) our CCQE E_{ν} reconstruction is
- 3. Neutrino energy dependence of cross sections and their differences on Carbon and Oxygen
 - So we know how to extrapolate from our ND to our FD
- 4. Differences in $\nu/\bar{\nu}$ cross sections
 - So we know when $\nu/\bar{\nu}$ differences imply CP-violation

- 1. Relative CC0 π contribution of CCQE and other processes
 - So we know how often we mis-reconstruct E_{ν}
- 2. Initial state nucleon momentum and energy
 - So we know how wide (and biased) our CCQE E_{ν} reconstruction is
- 3. Neutrino energy dependence of cross sections and their differences on Carbon and Oxygen
 - So we know how to extrapolate from our ND to our FD
- 4. Differences in $\nu/\bar{\nu}$ cross sections
 - So we know when v/\bar{v} differences imply CP-violation
- 5. Physics beyond the plane-wave impulse approximation
 - To confront the largest uncertainties in current analyses
 - So we know how to use our ND constraints on v_{μ} in v_e app. analyses

Stephen Dolan

What we measure when we measure σ

Top priority: avoid input model dependence

Stephen Dolan

Top priority: avoid input model dependence

Stephen Dolan

Top priority: avoid input model dependence

- Free normalisation parameters controlling N_i^{sig} are fit alongside those describing the flux, background and detector response to signal and control region data: background model directly constrained by data.
- Cross-section extracted with **no explicit regularisation** are provided: minimal input model bias from unfolding.

Top priority: avoid input model dependence

- Free normalisation parameters controlling N_i^{sig} are fit alongside those describing the flux, background and detector response to signal and control region data: background model directly constrained by data.
- Cross-section extracted with no explicit regularisation are provided: minimal input model bias from unfolding.
- Efficiency correction made, where possible, in all relevant model dependent observables that can affect detector response: minimise model bias.

Top priority: avoid input model dependence

• T2K makes extensive use of "mock data studies" to test analysis robustness:

Past measurements

Stephen Dolan

T2K CC0 π highlights: a history

First steps

- Double differential in muon kinematics on CH (2016)
- First measurement on water (2017) Phys. Rev. D 93, 112012 Phys. Rev. D 97, 012001

Youthful optimism

• Measuring muon-proton correlations (2018) Phys. Rev. D 98, 032003

Mature joint fit measurements

- C vs O, ν vs $\bar{\nu}$ (2020) Phys. Rev. D **101**, 112001, Phys. Rev. D **101**, 112004
- First measurement with WAGASCI (2021) PTEP 2021, 043C01
- Correlated energy spectra (2024) Phys. Rev. D 108, 112009

2024

2016

T2K CC0 π highlights: a history

First steps

- Double differential in muon kinematics on CH (2016)
- First measurement on water (2017) Phys. Rev. D 93, 112012 Phys. Rev. D 97, 012001

Youthful optimism

• Measuring muon-proton correlations (2018) Phys. Rev. D 98, 032003

Mature joint fit measurements

- C vs O, ν vs $\bar{\nu}$ (2020) Phys. Rev. D **101**, 112001, Phys. Rev. D **101**, 112004
- First measurement with WAGASCI (2021) PTEP 2021, 043C01
- Correlated energy spectra (2024) Phys. Rev. D 108, 112009

Final generation pre-upgrade analysis

- Second generation WAGASCI analysis (<1 year)
- Multi differential T/GKI on C+O, exploring Omnifold (~1 year)
- $CC0\pi + CC1\pi$ joint analysis

First ND280 upgrade analyses arXiv:1901.03750

- Low proton tracking thresholds and 4π angular acceptance
- Calorimetric analysis a la MINERvA
- Neutrons! Phys. Rev. D 101, 092003

2016

2024

Next

Nulnt?

First inclusive $CC0\pi$ measurement

First steps

- Double differential in muon kinematics on CH (2016)
- First measurement on water (2017) Phys. Rev. D **93**, 112012 Phys. Rev. D **97**, 012001

What we've learnt

- Preference for important 2p2h contribution
- Clear need for suppression of the cross section
 at forward angles w.r.t. PWIA models
- Qualitative reasonable agreement, but most models rejected quantitatively (even after fits)

Measuring muon+proton kinematics

Youthful optimism

• Measuring muon-proton correlations (2018) Phys. Rev. D 98, 032003

What we've learnt

- No model quantitatively describes measurements
- RFG models clearly rejected
- Robust estimation of QE vs non-QE in CC0 π +Np
- Clear requirement for $2p2h+\pi$ abs not much scope to alter one without changing the other

Measuring muon+proton kinematics Lots more to learn when considering T2K TKI measurements alongside those from MINERvA and MicroBooNE

(W. Filali et. al. + NuSTEC white paper update: papers in preparation)

Stephen Dolan

What's next?

Theory Inputs

- Neutrino scattering predictions carefully constructed from nuclear theory.
- \checkmark Precisely validated with electron scattering data
- X Usually have limited scope of application. E.g.:
 - Limited predictive power for hadron kinematics
 - Only valid for one process (e.g. only CCQE)
 - Not valid for very low or high energy transfer

Event generators

- Inputs to our oscillation measurements
- Stitch together available models however we can
- Fill in the gaps with semi-classical approaches

What's next?

Stephen Dolan

What's next?

Theory Inputs Event generators ✓ Neutrino scattering predictions carefully Inputs to our oscillation constructed from nuclear theory. measurements ✓ Precisely validated with electron scattering data Stitch together available models Usually have limited scope of application. E.g.: Х however we can Limited predictive power for hadron kinematics Fill in the gaps with semi-classical Only valid for one process (e.g. only CCQE) approaches Not valid for very low or high energy transfer Simple Observables: Mostly Calculable by theory **Extended approach: "Joint" Measurements** Ratios, Asymmetries, etc.: Sensitive to key physics

Theory Inputs

- Neutrino scattering predictions carefully constructed from nuclear theory.
- ✓ Precisely validated with electron scattering data
- X Usually have limited scope of application. E.g.:
 - Limited predictive power for hadron kinematics
 - Only valid for one process (e.g. only CCQE)
 - Not valid for very low or high energy transfer

Extended approach: "Joint" Measurements

Event generators

- Inputs to our oscillation measurements
- Stitch together available models however we can
- Fill in the gaps with semi-classical approaches

Simple Observables: Mostly Calculable by theory Ratios, Asymmetries, etc.: Sensitive to key physics

Carbon + Oxygen

Test extrapolation from ND to FD

Sensitive to nuclear effects via C/O ratio

Stephen Dolan

Stephen Dolan

Stephen Dolan

What we've learnt from joint measurements

Mature joint fit measurements

 $C \vee s O, \nu \vee s \overline{\nu}$ (2020) Phys. Rev. D 101, 112001, Phys. Rev. D 101, 112004

Mature joint fit measurements

Correlated energy spectra (2024)

Out latest CC0 π analysis:

- Measure cross-section at two detectors at different off-axis angles
- Comparison of measurements probes cross-section energy dependence
- Uncertainties are highly correlated: effective cancellation when making comparisons

Phys. Rev. D 108, 112009

Stephen Dolan

Mature joint fit measurements

Correlated energy spectra (2024)

Out latest CC0 π analysis:

- Measure cross-section at two detectors at different off-axis angles
- Comparison of measurements probes cross-section energy dependence
- Uncertainties are highly correlated: effective cancellation when making comparisons

1.5

2

2.5

47

0.5

⁼lux (arbitary units)

NuInt 2024, São Paulo, 16/04/2024

ND280

INGRID

WAGASCI

3

Mature joint fit measurements

Correlated energy spectra (2024)

Phys. Rev. D 108, 112009

- Overestimation of models at forward angles for ND280 but not for INGRID
 - Issue with energy dependence of low ω suppression (RPA)?
 - Or with non-QE contributions?

Mature joint fit measurements

Correlated energy spectra (2024)

Phys. Rev. D 108, 112009

- Overestimation of models at forward angles for ND280 but not for INGRID
 - Issue with energy dependence of low ω suppression (RPA)?
 Or with non-QE contributions?
- All tested models excluded by the measurement

Model	ND280	INGRID	Joint
Nominal MC (NEUT)	136.34	18.21	158.71
NEUT LFG + Nieves	106.46	11.46	116.26
NEUT SF + Nieves $M_A = 1.03$	194.88	14.36	209.18
NEUT SF + Nieves $M_A = 1.21$	158.71	9.98	170.93
NUWRO SF + Nieves	122.74	15.68	137.02
NUWRO LFG + Nieves	125.88	12.75	141.04
NUWRO LFG + SuSAv2	121.57	11.13	135.38
NUWRO LFG + Martini	138.86	12.46	155.68
GENIE BRRFG + EmpMEC	141.40	12.80	156.05
GENIE LFG + Nieves	125.50	14.45	135.69

Cross-sections with an upgraded near detector

Stephen Dolan

arXiv:1901.03750

Stephen Dolan

UAI Magnet Yoke SMRD POD ECal Barrel ECal ToF HA-TPC UP- Super-FGD HA-TPC HA-TPC

arXiv:1901.03750

 4π angular acceptance

Stephen Dolan

- 4π angular acceptance
- Lower tracking thresholds $p_p^{thresh} \sim 300 MeV/c}$ $p_\mu^{thresh} < 100 MeV/c$

arXiv:1901.03750

Stephen Dolan

- 4π angular acceptance
- Lower tracking thresholds $p_{\mu}^{thresh} \sim 300 \text{ MeV/c}$ $p_{\mu}^{thresh} < 100 \text{ MeV/c}$
- Substantially improved resolutions Phys. Rev. D **105**, 032010 $\Delta p_p/p_p < 5\%$
- Better timing resolution enables neutron energy measurements! $\Delta p_n/p_n < 30\%$

Phys. Rev. D **101**, 092003 arXiv:2310.15633

arXiv:1901.03750

Considerations for our future high-stats analyses

Stephen Dolan

- We always release our results with an accompanying covariance matrix
 - Approximation: uncertainties are Gaussian
 - But are they?

- We always release our results with an accompanying covariance matrix
 - Approximation: uncertainties are Gaussian
 - But are they?
- With current statistics, T2K uncertainties do seem to be mostly Gaussian
 - We test this for each analysis

- We always release our results with an accompanying covariance matrix
 - Approximation: uncertainties are Gaussian
 - But are they?
- With current statistics, T2K uncertainties do seem to be mostly Gaussian
 - We test this for each analysis
- But this isn't true if we simulate analyses with higher statistics, as we'll have with the upgrade
- **Example:** toy T2K analysis with 5x more stats

- We always release our results with an accompanying covariance matrix
 - Approximation: uncertainties are Gaussian
 - But are they?
- With current statistics, T2K uncertainties do seem to be mostly Gaussian
 - We test this for each analysis
- But this isn't true if we simulate analyses with higher statistics, as we'll have with the upgrade
- **Example:** toy T2K analysis with 5x more stats
- **Potential solution:** use ML methods to learn the real p.d.f., seems to work well!

- We always release our results with an accompanying covariance matrix
 - Approximation: uncertainties are Gaussian
 - But are they?
- With current statistics, T2K uncertainties do seem to be mostly Gaussian
 - We test this for each analysis
- But this isn't true if we simulate analyses with higher statistics, as we'll have with the upgrade
- **Example:** toy T2K analysis with 5x more stats
- **Potential solution:** use ML methods to learn the real p.d.f., seems to work well!
- Requirement from experiments: provide the "universes" that went into building our covariance matrices: T2K plans to do this.

Summary

- CC0 π is the dominant channel for T2K oscillation analyses
 - T2K cross-section measurements hone in on the physics that drives our oscillation analysis' systematic uncertainties
 - Recent focus on joint measurements
 - Long history of measurements with some clear conclusions:
 - Importance of forward-angle suppression
 - Constraints on C vs O and ν vs $\bar{\nu}$ (need guidance parameterising this)
 - Proportion of QE vs non-QE
 - All models are unable to describe all our measurements!
- Strong focus on ensuring model-independence
- Latest analysis: measurements on/off axis simultaneously
 - A model-independent probe of σ energy evolution
- A very exciting future ahead of us with ND280's upgrade

Backups

Stephen Dolan

CCQE (1p1h)

T2K is dominated by CC0
$$\pi$$
 interactions

- These are dominated by CCQE
- We are well suited to applying kinematic neutrino energy reconstruction to $CC0\pi$ event selections

$$E_{\nu} = \frac{m_p^2 - (m_n - E_B)^2 - m_{\ell}^2 + 2E_{\ell}(m_n - E_B)}{2(m_n - E_B - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

Proxy for E_{ν} from lepton kinematics is exact only for **CCQE elastic scattering** off a **stationary nucleon**

Stephen Dolan

0.8

 $E_{v}^{true}-E_{v}^{rec}$

$$\begin{array}{c} 1 \\ 0.07 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02$$

$$E_{\nu} = \frac{m_p^2 - (m_n - E_B)^2 - m_{\ell}^2 + 2E_{\ell}(m_n - E_B)}{2(m_n - E_B - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

The motion of the nucleons inside the nucleus (Fermi motion) causes a **smearing** on E_{ν}

Upgrade detector performance

- Dramatically improved angular acceptance
- Much lower tracking thresholds •
- Substantially improved resolutions ٠
- Better timing resolution enables • neutron energy measurements!

Stephen Dolan

NuInt 2024, São Paulo, 16/04/2024

200

400

600

800

1200

momentum (MeV)

1000

1400

Updated flux prediction

- Uses NA61/SHINE 2010 T2K replica target
 data for hadron production
 - Adds more stat to π^{\pm} production
 - Also adds K^{\pm} and proton data
- Overall reduction of flux error compared to 2009 replica target data (by ~6%)

