Why Neutrino Interactions Matter

Deborah Harris

York/Fermilab

April 11, 2024

NuSTEC School and Workshop

Who am I?

- This is the end of my fifth year as a prof at York U., with a joint appointment with Fermilab.
- Before that, I worked 20 years as a Scientist at Fermilab
- Before that, I was a postdoc for U of Rochester, also doing a neutrino experiment at Fermilab
- Before that, I was a grad student at U of Chicago, working on a Kaon Experiment at Fermilab
- Have seen different aspects of particle physics:
 - Graduate thesis looking for CP-violation in rare Kaon decays
 - Spent postdoc years studying weak interactions with high energy (~100GeV) neutrinos
 - Started working on neutrino oscillations (~GeV neutrinos)
 - Initially worked on neutrino beam designed for MINOS
 - Started worrying about neutrino interactions-enter MINERvA!
 - Collaborator on T2K & DUNE, Co-spokesperson of MINERvA

Top ten reasons to study* Neutrino Interactions

- 1. To understand the weak interaction
- 2. To understand the structure of the nucleus
- 3. There is lots of non-perturbative QCD here, keeps Lattice QCD folks busy
- 4. To improve precision in neutrino oscillation experiments
- 5. You can't find Beyond the Standard Model Physics until you account for the standard model neutrino interactions!
- 6. We need to predict the backgrounds to your dark matter experiment
- 7. For measurement: You get to be involved with all the parts of an analysis
- 8. Your work will get used by lots of other experiments

Reason 9: it makes an awesome thesis topic!

- Even if you ARE on an oscillation experiment, there's some chance your thesis will be a neutrino cross section measurement
- NOvA: https://novaexperiment.fnal.gov/theses/
 - 13 out of 63 Doctoral Theses were on cross sections
- T2K: <u>https://t2k.org/docs/thesis</u>
 - 57 out of 138 PhD+Masters theses have been on cross sections!

		Dates	Source	Primary Energy (GeV)	P [kW]	M [kt]	L [km]	E [GeV]
	K2K	1999 - 2004	KEK PS	12	5.2	22.5	250	0.9
	T2K	2010 - present	JPARC	30	515	22.5	295	0.6
	T2HK	2027	JPARC	30	[500,1 300]	188	295	0.6
	MINOS	2005 - 2012	Fermilab Main Injector	120	240	5.4	735	3.6
	MINOS+	2013 - 2016	Fermilab Main Injector	120	700	5.4	735	6.2
	NOvA	2014- present	Fermilab Main Injector	120	400 - 960	14	810	1.8
	DUNE	>2030	Fermilab Main Injector	120	1000 - 2400	40	1350	2.2
	CNGS / OPERA	2008 - 2012	CERN PS	400	512	1.25	730	1.25

From Mark Messier, INSS23

Reason 10: to learn more about neutrinos

- Quick wakeup question: what can we learn about neutrinos WITHOUT seeing them interact?
- Creation of that final state may require energy to be transferred from the neutrino

$$v \longrightarrow Target \longrightarrow Lepton$$

Recoil

- In charged-current reactions, where the final state lepton is charged, this lepton has mass
- The recoil may be a higher mass object than the initial state, or it may be in an excited state

K. McFarland, INSS 2013

Outline

- Neutrino Oscillations
 - Why Cross Sections Matter for Signal Processes
 - Why Cross Sections Matter for Backgrounds
- Beyond the Standard Model Searches
 - Dark Photon Searches
 - Neutral Heavy Lepton Searches
 - Proton Decay Searches

Minimal Oscillation Formalism

- If neutrino mass eigenstates: v_1 , v_2 , v_3 , etc.
- ... are not flavor eigenstates: $\nu_{e},\,\nu_{\mu},\,\nu_{\tau}$
- ... then one has, e.g.,

$$|v_{\alpha}, v_{\alpha}, v_{\tau} \rangle = \begin{pmatrix} v_{\alpha} \\ v_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_{i} \\ v_{j} \end{pmatrix}$$

$$|v_{\alpha}\rangle = \cos \frac{\pi}{4} |v_{i}\rangle + \sin \frac{\pi}{4} |v_{j}\rangle$$

$$|v_{\alpha}\rangle = \cos \frac{\pi}{4} |v_{i}\rangle + \sin \frac{\pi}{4} |v_{j}\rangle$$

$$|v_{\alpha}\rangle = -\sin \frac{\pi}{4} |v_{i}\rangle + \cos \frac{\pi}{4} |v_{j}\rangle$$

$$|v_{\beta}\rangle = -\sin \frac{\pi}{4} |v_{i}\rangle + \cos \frac{\pi}{4} |v_{j}\rangle$$

$$P(v_{\mu} \rightarrow v_{\tau}) = \sin^{2} 2\theta \sin^{2} \left(\frac{(m_{2}^{2} - m_{1}^{2})L}{4E}\right)$$

CIIIIan

UNIVERS

Unitary matrix defined by 3 mixing angles and a phase Call angles $\theta_{12}, \theta_{23}, \theta_{13}, \delta$ denote $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

Good News and Bad News: Matter Effects

• The oscillation probability changes differently for electron neutrinos vs antineutrinos when they propagate through matter:

- Can't treat neutrinos propagating through earth simply as mass eigenstates, have to take into account electron flavor
- This would give an apparent CP violation just because the earth is not CPsymmetric

11 April 2024

Additional Complication: Matter Effects, with math...

10

ν Oscillation Probabilities

- v_{μ} Disappearance: $1 \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$
- v_e Disappearance:

 $P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{31}^{2} L / 4E \right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\Delta m_{21}^{2} L / 4E \right)$

• v_e appearance in a v_μ beam: even more complicated...

•
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

 $P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$
 $P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$
 $P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$
 $P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$
11 April 2024

For one energy and basline:

🛠 Fermilab

ictions Matter

11

Comparison with the quark sector

- Weak eigenstates and Mass eigenstates in the quark sector have a very different mixing matrix, first proposed by Cabibbo Kobayashi Maskawa.
- There is an industry in the field to make precision electroweak measurements to constrain all the elements of that matrix
- We need to understand neutrino interactions if we are ever going to get to where the quark sector is

Figure 12.2: Constraints on the $\bar{\rho}, \bar{\eta}$ plane. The shaded areas have 95% CL.

Measuring Oscillation Probability:

$$\Phi_{\beta}(t) = \Phi_{\alpha}(0)P_{\alpha \to \beta}(t) = \Phi_{\alpha}(L=0)P_{\alpha \to \beta}(L/E)$$

- Must know or measure Neutrino Flavor
- Distance between creation and detection
- Neutrino Energy
 - No source we can use today is monochromatic!
 - Initial state: neutrino plus nucleus or electron
 - Final state: a bunch of stuff you only measure so well, sometimes you only measure the charged lepton
- Neutrino or Antineutrino?
 - Accelerator-based beams are always a mixture of both
 - Atmospheric neutrinos are also a mixture
 - Reactors and the sun are only one or the other

 $N = \Phi \sigma M \epsilon$

$$\mathsf{V}(E_{\nu}) = \Phi(E_{\nu})\sigma(E_{\nu})\mathsf{M}\epsilon(E_{\nu})$$

Measuring Oscillation Probabilities

For a given number N_{β} of v_{β} events in a detector, If you are starting with a source of v_{α} : look for

$$N_{\beta}(E) = \Phi_{\alpha}(E)P_{\alpha \to \beta} \left(\frac{L}{E}\right)\sigma_{\beta}(E)M\epsilon_{\beta}(E)$$

 ϕ =flux, σ = cross section ϵ =efficiency M=detector mass

Simple, right? It would be if you could know what Energy you were at, then all you have to do is count e's and μ 's

Neutrino Beams from Accelerators

- High energy protons strike block of material
- Unstable particles (π, K) are produced
- Trick: focus the charged particles before they decay to neutrinos
- Next trick: Give the particles time to decay but not too much time, so mostly ν_{μ} beam

Neutrino Beams from Accelerators

- The fine art of making a neutrino beam and determining its uncertainties could fill several 30 minute lectures.
- Key Facts:
 - Can only estimate neutrino energy based on what you see in the detector, there are no monochromatic neutrino energy beams in use

Neutrino Energy Spectra Compared to Oscillations

- DUNE
 - 1300km baseline
 - 40kton Liquid Argon Detector

- Hyper-K and T2K
 - 295km baseline
 - 260kton Water Cerenkov

1711 April 2024

Deborah Harris: Why Neutrino Interactions Matter

Seeing Neutrinos: Thresholds and processes

Process	Considerations	Threshold (typical)
vN→vN (elastic)	Target nucleus is often free (recoil is very small)	None ("CEvNS")
v _e n→e⁻p	In some nuclei (mostly metastable ones), this reaction is exothermic if proton not ejected	None for free neutron and some others.
ve→ve (elastic)	Most targets have atomic electrons	~ 10eV – 100 keV
anti-v _e p→e⁻n	m _n >m _p & m _e . Typically more to make recoil from stable nucleus.	1.8 MeV (free p). More for nuclei.
v _ℓ n→ℓ⁻p (quasielastic)	Final state nucleon is ejected from nucleus. Massive lepton	~ 10s MeV for $\nu_{\rm e}$ +~100 MeV for ν_{μ}
v _ℓ N→ℓ ⁻ X (inelastic)	Must create additional hadrons. Massive lepton.	~ 200 MeV for $\nu_{\rm e}$ + ~ 100 MeV for ν_{μ}

Deborah Harris: Why Neutrino Interactions Matter

• Energy of neutrinos determines available reactions,

K. McFarland, INSS 2013

18

From Quasi-elastic to Inelastic Scattering

- Charged Current: W^{\pm} exchange
 - Quasi-elastic Scattering: (Target changes but no break up) $v_{\mu} + n \rightarrow \mu^{-} + p$
 - Nuclear Resonance Production: (Target goes to excited state) $v_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0}$ (N^{*} or Δ) $n + \pi^{+}$ cro

- Shallow and
 Deep-Inelastic Scattering:
 (Nucleon broken up)
 - $\nu_{\mu} + \text{quark} \rightarrow \mu^- + \text{quark'}$

K. McFarland, INSS 2013

11 April 2024

First Detection Strategy: Cerenkov Light

particle	p (threshold)
e	660keV
μ	137MeV
π^{\pm}	175MeV
К	650MeV
p	1300MeV

As CHARGED

particles move faster than the speed of light in that medium,

they emit a "shock wave" of

- light
- For water, n(280-580nm)~1.33-6, so $p_{threshold} \approx 1.3^*$ mass $\beta \equiv \frac{v}{-}$
- Threshold Angle: 42°

$$\theta_c = \cos^{-1}(1/n(\lambda))$$

$$p_{threshold} = \frac{m}{\sqrt{n^2 - 1}}$$

Deborah Harris: Why Neutrino Interactions Matter

Cerenkov Light Detection in Practice

Super-Kamiokande: 50kton of Water "viewed" by phototubes

How Can a Cerenkov Detector Measure a Neutrino's Energy?

- If you could see all the particles the neutrino made....use conservation of energy (and momentum)
- What if you only see the final electron or muon?
 - If initial neutron was at rest, it's like a billiard ball system:

Challenges with this strategy

- Not all interactions that look quasielastic are quasielastic
- Pions might be missed (can look for their decay electron)
- Pions might be absorbed in the nucleus
- E_{ν}^{QE} assumes initial state nucleon is at rest
- Correlated pairs of nucleons in initial state mean different Center of Mass energy than what you assume

Next Detector Strategy: "Totally Active" Detector

- NOvA uses liquid scintillator, very low thresholds. Neutrino energy is estimated from a combination of lepton and hadronic components:
 - Muon energy is reconstructed via track length.
 - Calorimetric energy estimation is done separately for EM and hadronic clusters.
- NOvA event selection uses all charged current interactions for both v_{μ} and v_e channels.

What does a neutrino look like @ DUNE?

- Similar to NOvA: add up the lepton and hadron "visible" energy, but using Liquid Argon Time Projection Chamber (MicroBooNE, ICARUS, SBND)
- Electrons (right) look very different from muons (left)

These are Images from another Liquid Argon Detector, another neutrino beam, but "tracks" will look the same

Deborah Harris: Why Neutrino Interactions Matter

2511 April 2024

Why is measuring Hadron Energy Difficult?

- What could you measure about final state hadronic system
 - Do you track charged particles so you can measure their total kinetic energy?
 - Can you distinguish between p, π^+ , π^+ , π^0
 - What about neutrons, do you see those?

Example from MINERvA at right,

3.3cm plastic granularity

Similar in spirit to ~3cm wire pitch Liquid Argon (but different density, Z)

11 April 2024 Phys. Rev. D 94, 013012 (2016) Deborah Harris: Why Neutrino Interactions Matter

Figure courtesy P. Rodrigues

Near Detector Strategy

- Use two detectors to measure oscillations precisely:
 - Near detector sees beam before oscillations
 - Far detector measures beam after oscillations
 - Ideally, near and far detectors made of same material (Ar)
 - Correct for $1/r^2$ of beam, solve for oscillation

Words you should probably never believe...

- "One Size Fits All"
- "This won't hurt much"
- "It's not you it's me"
- "Cross Section Uncertainties cancel in a 2-Detector Experiment"
 - Disappearance Probabilities are huge, Far Detector flux and backgrounds very different from Near Detector Flux
 - Near Detector ν_{e} flux is very different from Near Detector ν_{μ} flux
 - If you are measuring probability versus energy, visible energy scale does NOT cancel!

MINERvA's Lesson on Energy

- Comparing the two different ways that experiments measure v energy
- For events that only have a muon and protons:
 - Use a detector that can measure both:
 - Energies of those protons that made it out of the nucleus
 - Energy that you would have predicted from muon angle and energy
 - See if you can predict the relationship between the two
- News from MINERvA: our current models don't do such a great job predicting that relationship

Ref: D. Ruterbories et al, Phys. Rev. Lett. 129 (2022)

But enough about signals, what about backgrounds?

- Neutrino Interactions matter because even if oscillations are large, you still have to predict backgrounds.
- Imagine you are looking for electron neutrinos:
 - How do you identify that you had an electron neutrino?
 - What else looks like an electron? Photons
 - What produces photons but no muons? Neutral Current π^0 production
- So as you learn about calculating neutrino cross sections at this meeting, don't forget about Neutral Current Interactions!

Beyond the Standard Model Searches

- "Standard" Neutrino Interactions are backgrounds to BSM searches!
- Dark Matter Searches
- Neutral Heavy Lepton Searches
- Yes, even Proton Decay searches!

 If you see a direct search for a BSM particle and there is no neutrino interaction background mentioned, think carefully about what might be there

• Neutrino Tridents

Diagrams from Neutrino Non-Standard Interactions: A Status Report

11 April 2024

Deborah Harris: Why Neutrino Interactions Matter

• Neutrino Tridents

But...What does Charm Production look like?

Diagrams from Neutrino Non-Standard Interactions: A Status Report

Deborah Harris: Why Neutrino Interactions Matter

33

Figure from Neutrino Non-Standard Interactions: A Status Report

Figure from Neutrino Non-Standard Interactions: A Status Report

MINERvA event candidate for Neutrino-electron scattering, or NC Coherent π^0 Production

- Neutral Heavy Leptons, first proposed in 1987 even before many were convinced neutrinos had mass (Physics Letters B, Volume 187, Issues 3– 4, 26 March 1987)
- Inspired by See-Saw Mechanism to explain light neutrino masses
- Recent effort to get this into modern generators: *Phys.Rev.D* 107 (2023) 5, 055003

- Neutral Heavy Leptons, first proposed in 1987 even before many were convinced neutrinos had mass (Physics Letters B, Volume 187, Issues 3– 4, 26 March 1987)
- Inspired by See-Saw Mechanism to explain light neutrino masses
- Recent effort to get this into
 modern generators:
 Phys.Rev.D 107 (2023) 5, 055003

Why Neutrino Interactions Matter

- Can't make precision oscillation measurements without them!
 - Need to know how neutrino energy is translated to particles we and do not see
 - Need to extend all the work on QE interactions to Pion production and beyond
 - Don't forget that we also need models for Neutral Current Interactions
 - Didn't have time to cover:
 - How the lepton mass changes the cross section

$$\cdot \ \frac{\nu_e}{\nu_\mu} \ \text{but also} \ \frac{\overline{\nu}_e}{\overline{\nu}_\mu} \text{ not to mention } \nu_\tau \text{ and } \overline{\nu}_\tau$$

 Can't search for Beyond the Standard Model Physics without knowing the neutrino backgrounds

38