Fermilab **ENERGY** Office of Science

(Relativistic) Mean Field models (and beyond)

Alexis Nikolakopoulos NuINT school, Sao Paolo, Brazil 11 April 2024

(Relativistic) Mean field models

- Non relativistic mean-field : Hartree-Fock
- The mean field idea : energy-density functional
- $\rightarrow\,$ beyond the mean-field : HF-CRPA
- Scattering in a relativistic mean field & approximations

Self-consistent mean-field

Mean field nucleus

- Mean field potential
- Single-particle wavefunctions
- Binding energies
- Orthogonal states (→ Pauli-blocking)

RMF

 Non-linear extended sigma-omega model
 Extension of the original
 Extension of the original

σ-ω Walecka model (Ann. Phys.83,491 (1974)).

HF-SkE2

- Hartree-Fock with extended Skyrme force
 - M. Waroquier et al. / Effective Skyrme-type interaction (I) Nuclear Physics A404 (1983) 269–297

Self-consistent mean-field

Mean field nucleus

- Mean field potential
- Single-particle wavefunctions
- Binding energies
- Orthogonal states (→ Pauli-blocking)

Effective interactions constrained by properties of nuclei and nuclear matter

	E/A	<i>r</i> p	r _n	re		$(MeV \cdot fm^8)$	K (MeV)	$\frac{(E/A)_{\rm n.m.}}{({\rm MeV})}$	$k_{\rm F} \ ({ m fm}^{-1})$	m^*/m	$a_{ au}$ (MeV)
		16	°0								
SkE2	-7.92	2.63	2.60	2.68	SkE2	-15808.79	200	-16.0	1.33	0.72	29.7
SkE4	-7.96	2.65	2.62	2.70	SI-E1	-12258.07	250	-16.0	1 31	0.75	30.0
SKIII	-8.03	2.04	2.01	2.70	SKC4	-12230.97	250	-10.0	1.51	0.75	50.0
exp	-7.98	90	Zr	2,71)	SkIII	0.0	356	-15.87	1.29	0.76	28.2
SkE2	-8.67	4.17	4.24	4.21							
SkE4	-8.71	4.22	4.29	4.26							
Sk111	-8.69	4.26	4.31	4.30							
exp	-8.71			4.27°)							

Particle states solutions of Shrodinger equation with potentials

$$-\nabla \left[\frac{\hbar^2}{2m_q^*(\boldsymbol{r})}\nabla \phi_{\alpha_q}(\boldsymbol{r})\right] + \left[U_q(\boldsymbol{r}) - i\boldsymbol{W}_q(\boldsymbol{r}) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_{\alpha_q}(\boldsymbol{r}) = \varepsilon_{\alpha_q}^{\mathrm{HF}} \phi_{\alpha_q}(\boldsymbol{r}) \,.$$

Particle states solutions of shrodinger equation with potentials

$$-\nabla \left[\frac{\hbar^2}{2m_q^*(\mathbf{r})}\nabla \phi_{\alpha_q}(\mathbf{r})\right] + \left[U_q(\mathbf{r}) - iW_q(\mathbf{r}) \cdot (\nabla \times \sigma)\right] \phi_{\alpha_q}(\mathbf{r}) = \varepsilon_{\alpha_q}^{\mathrm{HF}} \phi_{\alpha_q}(\mathbf{r})$$

The potentials depend on the densities:

$$\begin{split} U_q(\mathbf{r}) &= t_0 \big[(1 + \frac{1}{2}x_0)\rho_{\text{tot}} - (\frac{1}{2} + x_0)\rho_q \big] + \frac{1}{4}(t_1 + t_2)\tau_{\text{tot}} + \frac{1}{8}(t_2 - t_1)\tau_q \\ &+ \frac{1}{8}(t_2 - 3t_1)\nabla^2\rho_{\text{tot}} + \frac{1}{16}(3t_1 + t_2)\nabla^2\rho_q + \frac{1}{4}t_3(\rho_{\text{tot}}^2 - \rho_q^2) \\ &- \frac{1}{2}W_0'(\nabla \cdot \mathbf{J}_{\text{tot}} + \nabla \cdot \mathbf{J}_q) + \delta_{qp}V^C(\mathbf{r}) + \frac{1}{24}t_4 \big[2\rho_{\text{tot}}\tau_{\text{tot}} - 2\rho_q\tau_q \\ &+ \frac{5}{2}\rho_q\nabla^2\rho_q - \frac{5}{2}\rho_{\text{tot}}\nabla^2\rho_{\text{tot}} + \frac{5}{4}(\nabla\rho_q)^2 - \frac{5}{4}(\nabla\rho_{\text{tot}})^2 + \frac{1}{2}J_{q'}^2 \big], \end{split}$$

Which depend on the particle states:

$$\rho_q(\mathbf{r}) = \sum_{\alpha_q \gamma_q} \rho_{\alpha\gamma}^{(q)} \phi_{\alpha_q}^*(\mathbf{r}) \phi_{\gamma_q}(\mathbf{r}) ,$$

Particle states solutions of shrodinger equation with potentials

$$-\nabla \left[\frac{\hbar^2}{2m_q^*(\mathbf{r})}\nabla \phi_{\alpha_q}(\mathbf{r})\right] + \left[U_q(\mathbf{r}) - iW_q(\mathbf{r}) \cdot (\nabla \times \sigma)\right] \phi_{\alpha_q}(\mathbf{r}) = \varepsilon_{\alpha_q}^{\mathrm{HF}} \phi_{\alpha_q}(\mathbf{r})$$

The potentials depend on the densities:

$$\begin{split} U_q(\mathbf{r}) &= t_0 \big[(1 + \frac{1}{2} x_0) \rho_{\text{tot}} - (\frac{1}{2} + x_0) \rho_q \big] + \frac{1}{4} (t_1 + t_2) \tau_{\text{tot}} + \frac{1}{8} (t_2 - t_1) \tau_q \\ &+ \frac{1}{8} (t_2 - 3t_1) \nabla^2 \rho_{\text{tot}} + \frac{1}{16} (3t_1 + t_2) \nabla^2 \rho_q + \frac{1}{4} t_3 (\rho_{\text{tot}}^2 - \rho_q^2) \\ &- \frac{1}{2} W_0' (\nabla \cdot \mathbf{J}_{\text{tot}} + \nabla \cdot \mathbf{J}_q) + \delta_{qp} V^C(\mathbf{r}) + \frac{1}{24} t_4 \big[2\rho_{\text{tot}} \tau_{\text{tot}} - 2\rho_q \tau_q \\ &+ \frac{5}{2} \rho_q \nabla^2 \rho_q - \frac{5}{2} \rho_{\text{tot}} \nabla^2 \rho_{\text{tot}} + \frac{5}{4} (\nabla \rho_q)^2 - \frac{5}{4} (\nabla \rho_{\text{tot}})^2 + \frac{1}{2} J_{q'}^2 \big], \end{split}$$

Which depend on the particle states:

$$\rho_q(\mathbf{r}) = \sum_{\alpha_q \gamma_q} \rho_{\alpha \gamma}^{(q)} \phi_{\alpha_q}^*(\mathbf{r}) \phi_{\gamma_q}(\mathbf{r}), \quad \longrightarrow \quad \text{Iterate until convergence}$$

$$\begin{split} U_{q}(\mathbf{r}) &= t_{0} [(1 + \frac{1}{2}x_{0})\rho_{\text{tot}} - (\frac{1}{2} + x_{0})\rho_{q}] + \frac{1}{4}(t_{1} + t_{2})\tau_{\text{tot}} + \frac{1}{8}(t_{2} - t_{1})\tau_{q} \\ &+ \frac{1}{8}(t_{2} - 3t_{1})\nabla^{2}\rho_{\text{tot}} + \frac{1}{16}(3t_{1} + t_{2})\nabla^{2}\rho_{q} + \frac{1}{4}t_{3}(\rho_{\text{tot}}^{2} - \rho_{q}^{2}) \\ &- \frac{1}{2}W_{0}'(\nabla \cdot \mathbf{J}_{\text{tot}} + \nabla \cdot \mathbf{J}_{q}) + \delta_{qp}V^{C}(\mathbf{r}) + \frac{1}{24}t_{4}[2\rho_{\text{tot}}\tau_{\text{tot}} - 2\rho_{q}\tau_{q} \\ &+ \frac{5}{2}\rho_{q}\nabla^{2}\rho_{q} - \frac{5}{2}\rho_{\text{tot}}\nabla^{2}\rho_{\text{tot}} + \frac{5}{4}(\nabla\rho_{q})^{2} - \frac{5}{4}(\nabla\rho_{\text{tot}})^{2} + \frac{1}{2}J_{q'}^{2}], \end{split}$$

Remember!

Parameters are fit to reproduce (static) nuclear properties Over large mass range

Scattering in non-relativistic mean-field

The relativistic formulation in terms of Dirac spinors

$$\Gamma_V^{\mu} = F_1(Q^2)\gamma^{\mu} - \frac{F_2(Q^2)}{2m_N} \left(\gamma^{\mu} \mathcal{Q} - \mathcal{Q}\gamma^{\mu}\right)$$

Needs to undergoe non-relativistic reduction to act on non-rel single-particle states In coordinate space

For example:

$$\overline{u}F_A\gamma^{\mu}\gamma^5 u \rightarrow J_A^0 = \frac{F_A}{2M}\vec{\sigma}\cdot\left(\vec{\nabla}-\vec{\nabla}\right), \quad \vec{J}_A = F_A\vec{\sigma}$$
By writing $u(p) = \begin{bmatrix} \chi_s \\ \frac{\vec{\sigma}\cdot\vec{p}}{2M_N}\chi_s \end{bmatrix}$ and expanding in p/M_N

See e.g. [J. D. Walecka, Theoretical Nuclear And Subnuclear Physics]

Beyond the mean field: CRPA calculations in coordinate space

For self-consistent calculation: use the same interaction as used for the mean-field

¹⁰ For all the details: [J. Ryckebusch et al. Nuc. Phys. A, 476]

Beyond the mean field: example for electron scattering of ⁵⁶Fe

RPA takes into account Collective excitations Of the whole nucleus

CRPA

HF

[Nikolakopoulos et al. Phys. Rev. C 103, 064603 (2021)]

Beyond the mean field: CRPA calculations in coordinate space

$$\Pi^{(RPA)}(x_1, x_2; \omega) = \Pi^{(0)}(x_1, x_2; \omega) + \frac{1}{\hbar} \int dx \int dx' \ \Pi^{(0)}(x_1, x; \omega) \ \widetilde{V}(x, x') \ \Pi^{(RPA)}(x', x_2; \omega)$$

Applications to neutrino-nucleus interactions by the Ghent group:

- vCC on ¹⁶O and ¹²C at low energy N. Jachowicz et al. [Phys.Rev.C 65 (2002) 025501]
- T2K and MiniBooNE V. Pandey et al. [Phys. Rev. C 94, 054609 (2016)]
- Low-E neutrino ⁴⁰Ar scattering N. Van Dessel et al. [Phys. Rev. C 100, 055503]
- Electron and muon neutrino interactions A.N. et al. [Phys. Rev. Lett. 123 (2019) 5, 052501]
- Many more ...
- → Implementation in GENIE S. Dolan et al. [Phys.Rev.D 106 (2022) 7, 073001]

$$\mathcal{J}^{\mu}_{RDWIA} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r},\vec{k}',s_N) \Gamma^{\mu}\psi^{m_j}_{\kappa}(\mathbf{r})$$

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

- We can use Γ^{μ} without making use of non-relativistic reduction

$$\mathcal{J}^{\mu}_{RDWIA} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r},\vec{k}',s_N) \Gamma^{\mu}\psi^{m_j}_{\kappa}(\mathbf{r})$$

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

- We can use Γ^{μ} without making use of non-relativistic reduction
- Choices of potential for the wavefunctions:
 - RMF approach : initial and final-state in same potential
 - Optical potential for final state

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

The good quantum numbers are:

- Angular momentum
- Energy

→ Not momentum

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

The good quantum numbers are:

- Angular momentum
- Energy

→ Not momentum

At large **r** :

$$\psi(\mathbf{r}, E, \hat{\mathbf{p}}) \to u(p)e^{iEt-i\mathbf{p}\cdot\mathbf{r}}, \quad \mathbf{p}^2 = E^2 - M_N^2$$

$$\mathcal{J}_{RDWIA}^{\mu} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r}, \vec{k}', s_N) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{r})$$
$$\downarrow$$
$$\mathcal{J}_{RDWIA}^{\mu} = \int \mathrm{d}\mathbf{p} \overline{\psi}(\mathbf{p} + \mathbf{q}, \vec{k}', s_N) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{p})$$

The good quantum numbers:

- Angular momentum

- Energy

 \rightarrow Not momentum

Get a 'smearing' in momentum-space

$$\mathcal{J}_{RDWIA}^{\mu} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r}, \vec{k}', s_N) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{r})$$
$$\downarrow$$
$$\mathcal{J}_{RDWIA}^{\mu} = \int \mathrm{d}\mathbf{p} \overline{\psi}(\mathbf{p} + \mathbf{q}, \vec{k}', s_N) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{p})$$

The good quantum numbers:

- Angular momentum

- Energy

→ Not momentum

Get a 'smearing' in momentum-space

Compare to **RPWIA** expression :

$$\mathcal{J}_{RPWIA} = (2\pi)^{3/2} \overline{u}(p) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{p} - \mathbf{q})$$

Bound-wavefunction evaluated at fixed missing momentum \rightarrow Allows for 'factorized' expression with momentum distribution

PWIA

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

From **consistent** initial-final states:

- Current conservation
- Pauli-blocking

Dirac current is conserved

For free nucleons, the Dirac current is conserved:

$$Q_{\mu}\overline{u}(p') \gamma^{\mu}u(p) = \overline{u}(p') \left[p' - p \right] u(p) = (M_N - M_N)\overline{u}(p')u(p)$$

For nuclear matrix elements:

$$Q \cdot J = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} (E_f - E_i)\overline{\psi}(\mathbf{r})\gamma^0\psi_{\kappa}^{m_j}(\mathbf{r}) - i\nabla_i(\overline{\psi}(\mathbf{r})\gamma^i\psi_{\kappa}^{m_j}(\mathbf{r}))$$

Dirac current is conserved

For free nucleons, the Dirac current is conserved:

$$Q_{\mu}\overline{u}(p') \gamma^{\mu}u(p) = \overline{u}(p') \left[p' - p \right] u(p) = (M_N - M_N)\overline{u}(p')u(p)$$

For nuclear matrix elements:

$$Q \cdot J = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} (E_f - E_i)\overline{\psi}(\mathbf{r})\gamma^0\psi_{\kappa}^{m_j}(\mathbf{r}) - i\nabla_i(\overline{\psi}(\mathbf{r})\gamma^i\psi_{\kappa}^{m_j}(\mathbf{r})) = 0$$

If both states are solutions with energy E_i , E_f of the same Dirac equation:

$$\left[i\nabla_i\gamma^i + M_N + S(r) + \gamma^0(V(r) - E)\right]\psi(r) = 0$$

Dirac current is conserved: low energy scattering with vector current

$$Q \cdot \mathcal{J} = \omega \mathcal{J}^{0} - |\vec{q}| \mathcal{J}^{3} = 0$$

$$R_{CL} = \mathcal{R} \left\{ [\mathcal{J}^{3}]^{*} \mathcal{J}^{0} \right\}$$

$$\frac{\mathcal{R}_{CL}}{\mathcal{L}} = \mathcal{R} \left\{ [\mathcal{I}^{3}]^{*} \mathcal{I}^{0} \right\}$$

$$\frac{\mathcal{R}_{CL}}{\mathcal{I$$

‡ Fermilab

23

Different energy solution of Dirac equation are orthogonal

 $\rightarrow\,$ This leads to a proper implementation of Pauli-blocking

R. Gonzalez-Jimenez et al. [Phys. Rev. C 100, 045501 (2019)]

Electron-scattering at low-energies

- RPWIA : final-state are Dirac plane-waves
- RMF : same potential for initial and final states

R. Gonzalez-Jimenez et al. [Phys. Rev. C 100, 045501 (2019)]

Electron-scattering at low-energies

- RPWIA : final-state are Dirac plane-waves
- RMF : same potential for initial and final states
- RPWIA($p_N > 230$): 'Fermi gas-type' Pauli-blocking

• **PB-RPWIA**:
$$|\Psi^{s_N}(\mathbf{p}_N)\rangle = |\psi^{s_N}_{pw}(\mathbf{p}_N)\rangle - \sum_{\kappa,m_j} [C^{m_j,s_N}_{\kappa}(\mathbf{p}_N)]^{\dagger} |\psi^{m_j}_{\kappa}\rangle$$

[R. Gonzalez-Jimenez, A. Nikolakopoulos, N. Jachowicz, J.M. Udias PRC 100, 045501 (2019)]

Pauli-blocking leads to a suppression at small angles

 \rightarrow For neutrino-data all approaches give similar results

RDWIA for electron scattering at intermediate energies

[R. Gonzalez-Jimenez, A. Nikolakopoulos, N. Jachowicz, J.M. Udias PRC 100, 045501 (2019)]

‡ Fermilab

RDWIA for electron scattering at intermediate energies

Mean field implementations in event generators

The effect of final-state interactions is also important for inclusive CS

Implementation of the CRPA model in the GENIE event generator and analysis of nuclear effects in low-energy transfer neutrino-nucleus interactions

S. Dolan,¹ A. Nikolakopoulos,² O. Page,³ S. Gardiner,⁴ N. Jachowicz,² and V. Pandey⁵

¹CERN, European Organization for Nuclear Research, Geneva, Switzerland*
 ²Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium[†]
 ³School of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
 ⁴Fermi National Accelerator Laboratory, Batavia, IL 60502, USA
 ⁵Department of Physics, University of Florida, Gainesville, FL 32611, USA[‡]
 (Dated: November 2, 2021)

Implementation of the SuSAv2-MEC 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements

S. Dolan,^{1, 2, 3} G.D. Megias,^{1, 2, 4} and S. Bolognesi²

 ¹IN2P3-CNRS, Laboratoire Leprince-Ringuet, Palaiseau 91120, France
 ²DPhP, IRFU, CEA Saclay, 91191 Gif-sur-Yvette, France
 ³CERN, European Organization for Nuclear Research, Geneva, Switzerland
 ⁴University of Tokyo, Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, Kashiwa, Japan (Dated: February 21, 2020)

The implementation in generators is often **Only** the inclusive cross section

Neutrino interactions in event generators

The idealized version of the event generator:

This idea is based off 'factorized' approach

In reality: The inclusive cross section already includes nuclear effects And final-state interactions

Neutrino interactions based on inclusive CS in GENIE

Input to the generator is inclusive cross section:

$$\frac{\mathrm{d}\sigma(E_{\nu})}{\mathrm{d}E_{l}\mathrm{d}\cos\theta_{l}} = G^{2}\frac{k_{l}}{E_{\nu}}L_{\mu\nu}\int\mathrm{d}\Omega_{N}\sum_{n,\kappa}H_{n,\kappa}^{\mu\nu}(\omega,q,\Omega_{N},E_{n,\kappa})$$

Lost nucleon information \rightarrow Need to generate it in GENIE

1. Draw initial nucleon \mathbf{p}_{m} from p² n(p) (e.g. LFG)

11 2. Compute
$$E_m^2 = p_m^2 + M_N^2$$

3. $E_N = E_m + \omega - E_b(q)$
4. $k_N^2 = E_N^{2-} M_N^2$
11 $|\mathbf{p}_m + \mathbf{q}| \neq k_N = \sqrt{E_N^2 - M_N^2}$
 $\rightarrow \mathbf{k}_N = \frac{k_N}{|\mathbf{p}_m + \mathbf{q}|} (\mathbf{p}_m + \mathbf{q})$

0.5LFG GENIE RMF 0.45HFSkE2 0.40.350.3 $p^2 n(p) imes 10^3$ 0.250.20.150.10.050 0 50100200250300 350400150 $p \; (MeV)$

5. Give residual momentum to remnant

Neutrino interactions based on inclusive CS in GENIE

Input to the generator is inclusive cross section:

$$\frac{\mathrm{d}\sigma(E_{\nu})}{\mathrm{d}E_{l}\mathrm{d}\cos\theta_{l}} = G^{2}\frac{k_{l}}{E_{\nu}}L_{\mu\nu}\int\mathrm{d}\Omega_{N}\sum_{n,\kappa}H_{n,\kappa}^{\mu\nu}(\omega,q,\Omega_{N},E_{n,\kappa})$$
ost nucleon information \rightarrow Need to generate it in GENIE

Compare full result with GENIE approximation \rightarrow same inclusive CS!

$$\mathcal{J}^{\mu}_{RDWIA} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r},\vec{k}',s_N) \Gamma^{\mu}\psi^{m_j}_{\kappa}(\mathbf{r})$$

• The wave functions are static solutions of the Dirac equation with potentials:

$$\left[\hat{\alpha} \cdot \hat{\mathbf{p}} + \beta \left(m_N + S\left(r\right)\right) - \left(E - V\left(r\right)\right)\right] \psi = 0,$$

- We can use Γ^{μ} without making use of non-relativistic reduction
- RMF approach \rightarrow initial and final-state in same (real) potential
- We can use different description for final-state wavefunction
 → For exclusive interactions : Optical potential approach

Exclusive cross sections in the RDWIA

Exclusive scattering:

[M. Leuschner et al. PRC49, 955 (1994)]

Exclusive cross sections in the RDWIA

Exclusive electron scattering: In the 'mean-field' region

Direct 1-proton knockout from a nuclear shell

Exclusive cross sections in the RDWIA: optical potential

Coupled channels problem \rightarrow Effective one-body problem as a formal solution \clubsuit Fermilab

Exclusive cross sections in the RDWIA: optical potential

$$\begin{bmatrix} H^{free} + V_{00}^{nA} + V_{0j} \frac{1}{E - H_{ij} + i\eta} V_{j0} - E \end{bmatrix} |\phi_0\rangle \bullet$$
$$\approx \begin{bmatrix} H^{free} + \mathcal{V}^{opt} - E \end{bmatrix} |\phi_0\rangle$$

Coupled channels problem \rightarrow Effective one-body problem with optical potential

The (empirical) relativistic optical potential

PHYSICAL REVIEW C

VOLUME 47, NUMBER 1

JANUARY 1993

Global Dirac phenomenology for proton-nucleus elastic scattering

E. D. Cooper, S. Hama, and B. C. Clark

Department of Physics, The Ohio State University, Columbus, Ohio 43210

R. L. Mercer

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 31 August 1992)

Target		EDAI-fit		EDAD-fit		Reference
	T_p (MeV)		fit 1	fit 2	fit 3	
^{12}C	29.00	420.2	435.5	433.1	422.7	[6]
	30.30	415.9	429.0	425.6	414.2	[7]
	49.00	358.8	363.0	348.4	327.7	[6]
	49.48	357.4	361.8	347.0	326.1	[8]
	61.40	323.3	335.6	317.0	294.8	[9]
	65.00	313.5	329.0	309.7	287.4	[10]
	122.00	202.2	269.0	254.4	230.5	[11]
	160.00	177.8	252.3	246.4	215.2	[11]
	200.00	177.6	243.0	243.9	205.0	[11-13]
	300.00	201.1	233.0	235.4	194.9	[14]
	398.00	215.8	227.4	218.6	199.1	[15]
	494.00	227.2	223.7	203.0	211.6	[16]
	797.50	238.4	235.3	209.9	250.0	[17,18]
	1040.00	198.6	259.4	243.8	232.2	[19,20]

Fit to elastic proton-nucleus scattering data

Get a potential with imaginary part \rightarrow 'absorption' of nucleons Actually nucleon inelastic rescattering

🛠 Fermilab

Exclusive electron scattering with Optical potential: 'standard approach'

$$\mathcal{J}_{RDWIA}^{\mu} = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r}, \vec{k}', s_N) \Gamma^{\mu} \psi_{\kappa}^{m_j}(\mathbf{r})$$
[Meucci et
Solution of Dirac equation with optical potential
The optical potential
Removes all the flux lost in
Inelastic final-state interactions

[Meucci et al. PRC64, 014604]

0

P_{1/2}

P_{3/2}

100

100

200

200

p_m [MeV/c]

p_ [MeV/c]

300

300

FIG. 11. The reduced cross section (σ_{red}) of the ${}^{16}O(e,e'p)$ reaction as a function of the recoil momentum p_m for the transitions to the $1/2^-$ ground state and to the $3/2^-$ excited state of ${}^{15}N$, in

0

🛟 Fermilab

Exclusive electron scattering with Optical potential: 'standard approach'

$$\mathcal{J}^{\mu}_{RDWIA} = \int \mathrm{d}\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \overline{\psi}(\mathbf{r},\vec{k}',s_N) \Gamma^{\mu}\psi^{m_j}_{\kappa}(\mathbf{r})$$

[Meucci et al. PRC64, 014604]

Solution of Dirac equation with optical potential

The optical potential **Removes** all the flux lost in **Inelastic final-state interactions**

In neutrino experiments we want to Describe **explicitly Inelastic final-state interactions**

FIG. 11. The reduced cross section (σ_{red}) of the ¹⁶O(e,e'p) reaction as a function of the recoil momentum p_m for the transitions to the $1/2^-$ ground state and to the $3/2^-$ excited state of ¹⁵N, in

Where do the protons go ?: explicit modeling of 'rescattering'

Neutrino event generators use intra-nuclear cascade models (INCs)

- Hadrons move in the nucleus on classical trajectories
- Density and in-medium cross section determine mean-free-path
- Interaction produces secondary hadrons that are propagated through
- Stochastically determines final-state content

Where do the protons go ?: explicit modeling of 'rescattering'

Neutrino event generators use intra-nuclear cascade models (INCs)

- Hadrons move in the nucleus on classical trajectories
- Density and in-medium cross section determine mean-free-path
- Interaction produces secondary hadrons that are propagated through
- Stochastically determines final-state content

Optical potential can not do this!

But can be compared to part of the signal

Use the RDWIA to benchmark the cascade model

1. Input to the cascade:

Events from **unfactorized** five-fold differential nucleon knockout cross section **=RDWIA results in mean-field**

2. Kinematic cuts on results

Select events with E_m in shell-model Is an exclusive cross section

Cascade can be compared To optical potential calculations

Use the RDWIA to benchmark the cascade model

Direct comparison for T2K flux

Cascade and RDWIA agree at high energies Disagree strongly at low energies!

Take-aways:

- Make use of **effective interactions** fitted to nuclei at mean-field level
- If we restrict to mean field we get **consistent description**

 - Final-state interactions
 - Current conservation

- ...

- In reality: Beyond mean-field contributions are important
- The mean-field can be used as a **basis for these contributions**
 - CRPA results for long-range correlations
 - Short range correlations:
 - LCA [V. Cuyck, PhysRevC.94.024611]
 - Effective shells [R. Gonzalez-Jimenez, Phys. Rev. C 105, 025502]

⁴⁶ LCA: [J. Ryckebusch et al. Phys. Lett. B, 792, (2019)]

Questions ? Answers ?

