The Analyzer: There and Back Again

Daniel Cherdack University of Houston

Nulnt Satellite School April 11th – 13th, 2024 Sao Paulo, Brazil

Choosing an Analysis

- As an analyzer you need to accomplish a few goals with your analysis
 - Get you PhD Happy adviser
 - Learn something
 Happy future employer
 - Contribute to you collaboration

Happy conveners

- Contribute to science Happy world

- Considerations
 - Is it interesting?
 - Is it possible?
 - What can you really measure?
 - What can you learn by doing this analysis?
 - Physics
 - Technique
 - Statistics
 - Modeling
 - Detector performance

Getting Started

- Define some physics process of interest
 - Can it be measured with your detector?
 - Is your measurement competitive with previous results?
 - Is it valuable to the broader community?
- Count the number of occurrences in your detector over some exposure
- Subtract off anomalous counts (type I errors)
- Correct for missed counts (type II errors)
- Convert from counts to "cross section"

ceCUBE

NOVA

 ν_{τ} interactions

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of
 - Field (elastic)
 - Internal structure of the target (inelastic)

How do we turn counts in a detector into a cross section?

$$<\sigma_i> = \frac{N_i^{sel} - N_i^{bkg}}{T \Phi < \epsilon_i>}$$

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of target properties How do we turn counts in a detector into a cross section? $N_{sel}^{sig} = N_{sel} - N_{sel}^{bkg} = \int \sigma(E) \phi(E) T \epsilon(E) dE \quad \leftarrow \text{ Total number of events}$

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of target properties

How do we turn counts in a detector into a cross section?

 $N_{sel}^{sig} = N_{sel} - N_{sel}^{bkg} = \int \sigma(E) \phi(E) T \epsilon(E) dE \leftarrow$ Total number of events $N_{i}^{sel} - N_{i}^{bkg} = \int \sigma_{i}(E) \phi(E) T \epsilon_{i}(E) dE \leftarrow$ Events in some final state kinematic region

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of target properties

How do we turn counts in a detector into a cross section?

$$\begin{split} N_{sel}^{sig} &= N_{sel} - N_{sel}^{bkg} = \int \sigma(E) \phi(E) T \epsilon(E) dE \quad \leftarrow \text{ Total number of events} \\ N_{i}^{sel} - N_{i}^{bkg} &= \int \sigma_{i}(E) \phi(E) T \epsilon_{i}(E) dE \quad \leftarrow \text{ Events in some final state kinematic region} \\ N_{i}^{sel} - N_{i}^{bkg} &= T < \sigma_{i} > < \epsilon_{i} > \int \phi(E) dE \quad \leftarrow \text{ Use energy averaged xsec and eff} \end{split}$$

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of target properties

How do we turn counts in a detector into a cross section?

$$\begin{split} N_{sel}^{sig} &= N_{sel} - N_{sel}^{bkg} = \int \sigma(E) \phi(E) T \epsilon(E) dE \quad \leftarrow \text{ Total number of events} \\ N_i^{sel} - N_i^{bkg} &= \int \sigma_i(E) \phi(E) T \epsilon_i(E) dE \quad \leftarrow \text{ Events in some final state kinematic region} \\ N_i^{sel} - N_i^{bkg} &= T < \sigma_i > < \epsilon_i > \int \phi(E) dE \quad \leftarrow \text{ Use energy averaged xsec and eff} \\ N_i^{sel} - N_i^{bkg} &= T < \sigma_i > < \epsilon_i > \Phi \qquad \leftarrow \Phi \text{ is the integrated flux} \end{split}$$

- Measure of probability of interaction occurring
- Given in units of area
 - Hard sphere scattering target
 - Analogy to cross sectional area
- Measurement of target properties

How do we turn counts in a detector into a cross section?

$$\begin{split} N_{sel}^{sig} &= N_{sel} - N_{sel}^{bkg} = \int \sigma(E) \phi(E) T \epsilon(E) dE \quad \leftarrow \text{ Total number of events} \\ N_{i}^{sel} - N_{i}^{bkg} &= \int \sigma_{i}(E) \phi(E) T \epsilon_{i}(E) dE \quad \leftarrow \text{ Events in some final state kinematic region} \\ N_{i}^{sel} - N_{i}^{bkg} &= T < \sigma_{i} > < \epsilon_{i} > \int \phi(E) dE \quad \leftarrow \text{ Use energy averaged xsec and eff} \\ N_{i}^{sel} - N_{i}^{bkg} &= T < \sigma_{i} > < \epsilon_{i} > \Phi \qquad \leftarrow \Phi \text{ is the integrated flux} \\ < \sigma_{i} > = \frac{N_{i}^{sel} - N_{i}^{bkg}}{T \Phi < \epsilon >} \qquad \leftarrow \text{ Solve for the energy averaged xsec} \end{split}$$

- What you want to measure vs what you can measure
 - Difference between the two must be corrected by model assumptions
 - Define your signal carefully <-- always based on truth information
 - Be honest and explicit about what you measure and the required corrections

- What you want to measure vs what you can measure
 - Difference between the two must be corrected by model assumptions
 - Define your signal carefully <-- always based on truth information
 - Be honest and explicit about what you measure and the required corrections
- Find reconstructed (measured) quantities that isolate your signal
 - Cuts: use each quantity individually
 - MVA: Identify regions of high signal density in N-dimensional quantity space
 - Reserve some quantities/regions for analysis

- What you want to measure vs what you can measure
 - Difference between the two must be corrected by model assumptions
 - Define your signal carefully <-- always based on truth information
 - Be honest and explicit about what you measure and the required corrections
- Find reconstructed (measured) quantities that isolate your signal
 - Cuts: use each quantity individually
 - MVA: Identify regions of high signal density in N-dimensional quantity space
 - Reserve some quantities/regions for analysis
- Selection optimization
 - Figure of merit (FOM): quantity that scales with sensitivity
 - Good FOM depends on relative importance of systematic uncertainties
 - ⁻ Propagation of error in terms of counts (N^{sig}), efficiency (ε), and purity (ρ), gives:

$$\sigma(N^{sig}) = \sqrt{\left(\frac{\partial N^{sig}}{\partial N_{sel}}\sigma(N_{sel})\right)^2 + \left(\frac{\partial N^{sig}}{\partial N^{sig}}\sigma(N_{sig})\right)^2 + \left(\frac{\partial N^{sig}}{\partial N_{bkg}}\sigma(N_{bkg})\right)^2} = \sqrt{\left(\frac{\partial N^{sig}}{\partial N_{sel}}\sigma(N_{sel})\right)^2}$$

- What you want to measure vs what you can measure
 - Difference between the two must be corrected by model assumptions
 - Define your signal carefully <-- always based on truth information
 - Be honest and explicit about what you measure and the required corrections
- Find reconstructed (measured) quantities that isolate your signal
 - Cuts: use each quantity individually
 - MVA: Identify regions of high signal density in N-dimensional quantity space
 - Reserve some quantities/regions for analysis
- Selection optimization
 - Figure of merit (FOM): quantity that scales with sensitivity
 - Good FOM depends on relative importance of systematic uncertainties
 - ⁻ Propagation of error in terms of counts (N^{sig}), efficiency (ε), and purity (ρ), gives:

$$\left(\frac{\delta N^{sig}}{N^{sig}}\right)^{2} = \left(\frac{1}{\epsilon\rho N^{sig}}\right) + \left(\left(\frac{1}{\rho} - 1\right)\sigma_{Bkg}\right)^{2} + \sigma_{\epsilon}^{2} \qquad \left(\frac{\epsilon = \frac{N^{signal}_{selected}}{N^{signal}}\right)^{2} + \sigma_{\epsilon}^{2} + \sigma_{\epsilon$$

(d) MuPi Signal Background Comparison

Rejection 0.3

Background

8<u>≍10</u>3

6

NONE REMOVED

ewyzouality zAboveBelowLengthDiff zAboveBelowQualityRatio 0.6 zAboveTotChargeRatio ullEnd hortestDistMichClstTrung 0.4 xzlMattNewTotalCharge yzlChargeAtStart yzlMattNewTotalCharge nP0Dules 0.2 nodeLength EDenosit 0.20.40.60.8Signal Efficiency ients in % 100 IStdDevAtMid ISMD#vAIMid tionOfCha tionOfCharge X7MpandEd **VZMeandErte** 1900.4r **lichCistTrung** -60 -80 Pion (π⁺, π⁻) Muon Total

150 200 pullEnd (DanR)

TMVA overtraining check for classifier: BDT

BDT output

Constraining Your Backgrounds

- Signal --> Defined by true quantities
- Selection --> Defined by reconstructed quantities
- These will not match up so you will have Backgrounds
- Need to minimize: (1/ ρ 1) $\sigma_{_{\text{Bkg}}}$
 - Improve purity --> redo selection
 - Reduce $\sigma_{\rm \tiny Bkg}$ --> Constrain/measure background
- Sideband samples:
 - Background becomes your "Signal"
 - Backgrounds must "match" i.e. come from same events
 - Constrained background model (template) with Sideband
 - Propagate constraints to the Selected sample
 - Best technique: combined fit of Selected and Sideband samples
 - Two steps in one (constrain and propagate)
 - Correlated errors automatically included

Constraining Your - All Selected Backgrounds - SB

 $W^2 [(GeV/c^2)^2]$

 $\stackrel{2}{W^{2}}[(GeV/c^{2})^{2}]$

 $\stackrel{2}{W^{2}}[(GeV/c^{2})^{2}]$

coh

NC

Understand Your Efficiencies

- Propagated error on the efficiency cannot be reduced by measurements!
- Plot you eff in all important 1D and 2D spaces
 - Cut/MVA variables
 - Potential analysis variables
 - True particle kinematics (ex. p_x $\cos\theta_x$)
 - True event kinematics (Q2, W)
- Efficiency binning should be narrower than analysis bins
- Not so narrow that statistical errors on efficiency dominate
- If ε is not flat in x measure x <-- Change across bin smaller that stat flucts
- If you can't measure x, cut the phase space (region ε is not flat in x)
- If you can't cut the phase space, correctly propagate the error, $\sigma_{\!\scriptscriptstylearepsilon}$

Understand Your Efficiencies

Calculate the cross section with:

$$\sigma = \sum_{i} \frac{N_i - B_i}{\Phi T \epsilon_i}$$

However,

$$\sum_{i} a_{i} \times b_{i} \neq \sum_{i} a_{i} \times \sum_{i} b_{i}$$

With $a_{i} = N_{i} - B_{i}$, and $b_{i} = \frac{1}{\epsilon_{i}}$

Unless *a* or *b* does not change with *i*

Detector Systematics

- Need to understand all your observables
 - Everything you cut on (implicit and explicit)
 - All analysis variables
 - Data quality
- How does my inability to model X affect my analysis?
 - Smearing (true vs reco), resolution (reco-true)/true, and/or residual (reco true)
 - How many events cross cut boundaries
 - Artificially induced and/or missed counts
- Organize and evaluate by cause, not by effect (if possible); example:
 - Fiducial Mass:
 - Number of targets
 - Uncertainty on material amounts in the fiducial volume
 - Fiducial volume:
 - Vertex migration --> Vertex resolution near fiducial volume boundary
 - Out of detector volume --> mis-reconstruction or neutral particle S.I.

Analysis Variables and Binning

- What can be accurately measured / well calibrated?
 - Diagonal smearing?
 - Low bias?
 - Good resolution?
 - Modeled analytically (e.g. Gaussian or Cauchy)
- Statistics: Bin stat error $\sim \sqrt{N}_{i}$
- Efficiency: Flat across each bin?
- True space vs reco space (unfolding)

Flux and Cross Section Systematics

- What affects your analysis samples?
- Flux:
 - Covariance matrix in Ev-flavor-beam space.
 - Do you need to worry about wrong flavor or wrong sign contamination?
 - To PCA or not to PCA?
- Cross section:
 - Signal models: Generally you measure, so no error on N_{sel}^{sig} ... but ...
 - FSI induced topology changes (e.g. pion absorption)
 - Efficiency correction
 - Background models: analysis sample template fluctuations, by channel
 - Nuclear models: Nucleon momentum distribution, FSI
 - Secondary interactions: Do your your FS particles interact with your detector?

Cross Section Extraction

- Fitting --> parameter estimation techniques
 - Fit parameters:
 - Signal unconstrained (i.e. no bias towards prior)
 - Backgrounds model based templates with shape altering parameters
 - Need more bins than fit parameters
 - Only one unconstrained parameter per bin
 - Developing your test statistics (χ^2)
 - Gaussian vs Poisson statistics (Wilke's theorem) & MC statistics
 - Systematics and the penalty term:
 - –Penalty terms has the form: $(\delta/\sigma)^2$, where δ is the parameter value change and σ is the gaussian width

-Same χ^2 contribution as a combined fit with the external data used to estimate the prior, σ

- -Correlated priors: $\delta C^{-1}\delta^T$, where δ is a vector of δ , and C represents an N-dimensional gaussian
- Unfolding and related techniques
 - Relates the measurement in reco space to the model in true space
 - Relies on the MC based smearing prediction (detector model)
 - Tends to have many degenerate solutions --> III posed problem
- Fitter outputs
 - Best-fit parameter values
 - Best-fit test statistic (χ^2) value
 - Parameter uncertainties and covariances

Mock Data Studies

- Asimov studies (closure tests)
 - Do all the dials work as intended --> no crazy or unphysical weights
 - No local minima --> change starting parameter values
- Changing the model with fit parameters
 - Understand fitter response to parameters shifts
 - Make MD by adjusting dials by 1σ
 - Make MD by adjusting groups of dials by known amounts
- Alternate models
 - Nuclear models (RFG, LFG, SF, etc)
 - Interaction models (RS --> MK, RS --> BS)
 - Generators (NEUT --> GENIE, NuWro)
 - Crazy weights (test robustness, no physical meaning)
- Random throws
 - Statistical (random throw from a Poisson distribution)
 - Systematic (random parameter throws)
 - Statistical + systematic (all together now)

- What to look for:
 - Fits converge properly
 - Best-fit MC matches the data
 - Parameter values (best fit values, pulls, errors, and correlations)
 - No degenerate parameters (have same effect on analysis spectra)
 - What are you sensitive to? What aren't you sensitive to?

Calculate the Cross Section

- Back to where we started: $<\sigma_i> = \frac{N_i - B_i}{T \Phi < \epsilon_i>}$
 - Fit gives you $N_i B_i$, with errors
 - Throw full fit covariance matrix (w/ nuisance parameters) to get error on N_i's
 - Fiducial Mass in AMU gives T
 - Error on T from survey info, etc
 - Flux w/ error comes from beam group
 - Efficiency w/ error should be in hand from selection studies
 - Apply efficiency corrections before combining bins!
 - Bins with negative signal content?

Box Opening & Model Comparisons

- Mock data studies tell us:
 - Sensitivity to fit parameters
 - Range of potential data where the fitter works
 - Test statistic distribution / ndof
- Staged box opening procedure:
 - Open one sample at a time
 - Compare with mock data results
 - Data within range studied (pre-fit)?
 - Best-fit parameters in post-fit range?
 - Best-fit χ^2 in range?
 - If consistent, move on
 - If problematic, reevaluate
 - Easy to move forward, but hard to go back without introducing bias

- Model Comparisons
 - Depends on the type of result
 - Unfolded:
 - Easy to compare post publication
 - More model dependence
 - Forward folded:
 - Less corrections needed
 - Compare post publication --> ReMU
 - What is in your MC?
 - What can your MC be reweighted to?
 - Data releases and NUISANCE

Comments, Questions, Discussion?

Official Plots and Data Release

- Official plots
 - Plots from your TN
 - To be used in:
 - Conference talks
 - Publications
 - Include (but not limited to):
 - Main physics results
 - Error analysis
 - MC signal characterization
 - Selected samples and efficiencies
 - Detector response and characterization
 - Posted separately to t2k.org
 - Plots in ROOT and graphical format
 - Plot caption/description
 - Script exists to build html formatting

- Data Release
 - Formats
 - ROOT file
 - Text file
 - Tables in paper appendix
 - Code
 - Script that reads in and uses data products
 - NUISANCE implementation
 - Contents
 - Plots of data
 - Output covariance matrix
 - Input flux covariance matrix
 - Not a fully solved problem and continuing to develop