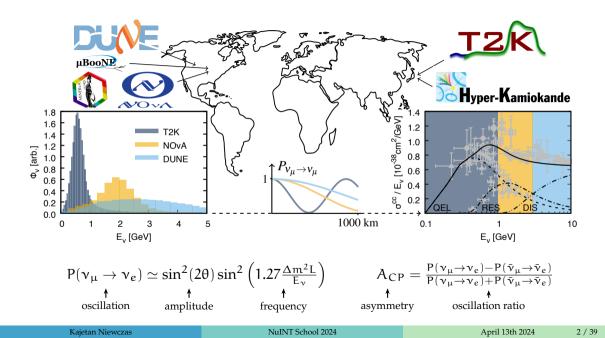
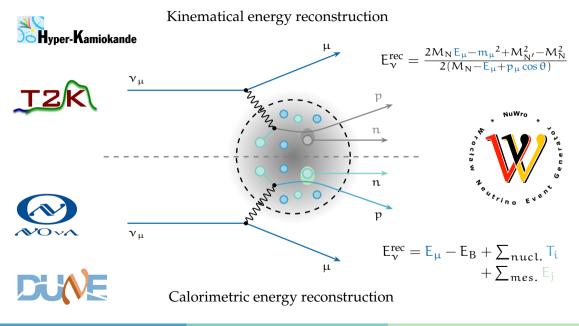
How generators work ... and why it's wrong*

Kajetan Niewczas

Kajetan Niewczas

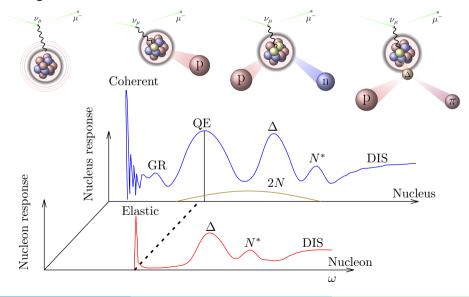




Kajetan Niewczas

NuINT School 2024

Nuclear response



Kajetan Niewczas

Basic aspects of the methodology

From Solitaire to the Monte Carlo method

At Los Alamos, Stanisław Ulam, John von Neumann, Nicholas Metropolis and others invented a method to obtain stochastic predictions for **systems too complex to be solved analytically**.

- \rightarrow We can build a complex model using simple components
- → Every required decision is **made stochastically** (randomly)
- \rightarrow We **run** such a model N **times** and analyze the output
- $\rightarrow \ For \ N \rightarrow \infty$ we approach the correct result for the model

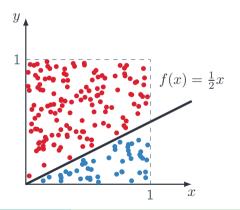
Electronic Numerical Integrator and Computer (ENIAC)

Monte Carlo integration (hit-or-miss method)

Let's consider the following integral

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{2}x\right) dx = \frac{1}{2} \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{4}$$

- \rightarrow Take a random point from [0; 1] \times [0; 1]
- \rightarrow Compare it to your f(x)
- \rightarrow Repeat N times
- \rightarrow Count n points below the function
- \rightarrow The result is given by $\int_0^1 f(x) dx = A_{\Box} \frac{n}{N}$



Monte Carlo integration (crude method)

Let's consider the following integral (again)

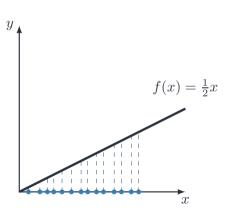
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{2}x\right) dx = \frac{1}{2} \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{4}$$

 \rightarrow One can approximate the integral by

$$\int_a^b f(x) \ dx = \frac{b-a}{N} \sum_i^N f(x_i)$$

where x_i is a random number from [a; b]

 \rightarrow This method leads to slightly higher precision

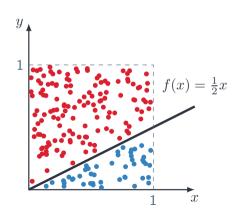


Accept-or-reject algorithm

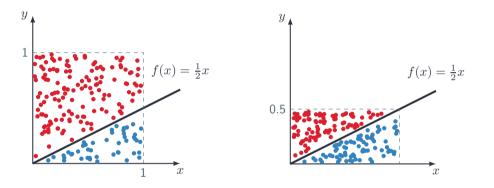
Let's generate a set of points that follows the probability distribution given by our function

 $f(x) = \frac{1}{2}x$

- \rightarrow Find a suitable $f_{max} \ge max(f)$
- \rightarrow Take a **random** x from [0; 1]
- \rightarrow Generate a **random** u from [0, f_{max}]
- \rightarrow Accept the point x if $u \leq f(x)$ (P = $\frac{f(x)}{f_{max}}$)



Optimization



 \rightarrow We wish to **increase the efficiency** of our calculation by avoiding loosing the "red" points

 \rightarrow We can choose any envelope to our function as long as it **contains the maximum of** f(x)

Kajetan Niewczas

NuINT School 2024

Importance sampling

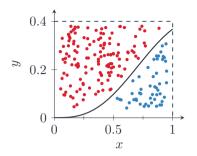
Let's consider a different function

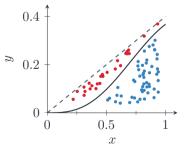
$$f(x) = A x^3 e^{-x^2}$$

with x in [0; 1] and $A = \frac{2e}{e-2}$

- $\circ~$ The area under f(x) is \sim 0.13, while the total is 0.4
- Having a good x-dep. envelope increases efficiency
- \rightarrow For, e.g., g(x) = 0.4x, the total area is 0.2
- \rightarrow We can accept points using a **probability**

 $\mathsf{P}(x) = \mathsf{f}(x)/\mathsf{g}(x)$





NuINT School 2024

Importance sampling

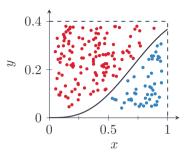
Let's consider a different function

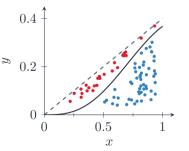
$$f(x) = A x^3 e^{-x^2}$$

with x in [0; 1] and $A = \frac{2e}{e-2}$

- Alternatively, we could change our random numbers from **non-uniform distributions**
- $\circ~$ We can pick more points where the function is larger
- \rightarrow We can **sample points from** g(x) = 0.4x, and correct the probability

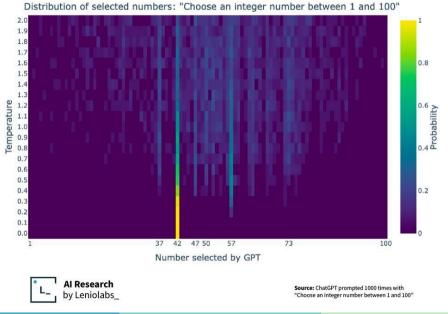
$$\int_0^1 f(x) dx \rightarrow \int_0^1 \frac{f(x)}{g(x)} [g(x) dx]$$





Problems to consider

- How to generate random numbers from a uniform distribution?
- What does it mean for a random number generator to be good?
- How to generate numbers from discrete random variables?
- How to generate numbers from continuous random variables?
- How to generate numbers from arbitrary distributions?



Kajetan Niewczas

NuINT School 2024

Example I: Nucleon propagation

Classical particle propagating through a medium

Probability for a particle to propagate over a distance x with **no interactions** is

$$P(x) = \frac{1}{\lambda} \exp(-x/\lambda)$$

where $\lambda = (\rho \sigma)^{-1}$ is the mean free path, while ρ is target density and σ is interaction cross section

We can try to apply it to nucleons in nuclei because:

$$\tilde{\lambda} \ll d < \lambda < R$$

where $\tilde{\lambda}$ is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius

N. Metropolis et al., Phys.Rev. 188 (1958) 185, Phys.Rev. 188 (1958) 204

Kajetan	Niewczas
---------	----------

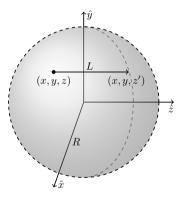
NuINT School 2024

Application to nuclei (space-like approach)

- Pick a random starting point in the nucleus
- $\circ~$ Propagate the nucleon in discrete steps, e.g., $\Delta x=0.2~fm$
- At every step, we sample x from $P(x) = \lambda^{-1} \exp(-x/\lambda)$
- $\rightarrow~$ If x $<\Delta x$, then the nucleon-nucleon interaction happens
- The probability that the nucleon leaves the nucleus with no re-interactions is called **transparency**
- \rightarrow Our procedure solves an integral

$$\mathsf{T} = \int_0^{2\mathsf{R}} \mathsf{f}_\mathsf{R}(z) e^{-z/\lambda} \, \mathrm{d}z$$

where $f_R(z)$ is the distribution of the starting points



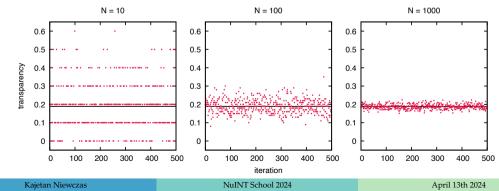
Nuclear transparency

• For fixed density (uniform ball), the solution is given analytically

$$T = 3e^{-A}\left(\frac{1}{A^2} + \frac{1}{A^3}\right) + 3\left(\frac{1}{2A} - \frac{1}{A^3}\right)$$

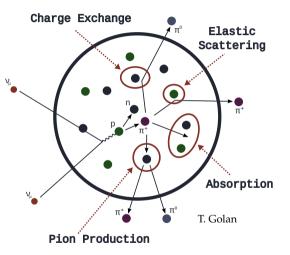
where $A=2R/\lambda=2R\rho\sigma$

 $\rightarrow\,$ e.g., for $\rho=0.16~fm^{-3},\,\sigma=40$ mb, and R=6 fm, we get $T\simeq0.189$



Intranuclear cascade

- → implement realistic density profiles and cross sections
- \rightarrow add the **kinematics** of each interaction
- \rightarrow respect Pauli blocking
- → make sure that scattered particles also propagate
- → introduce **branching ratios** of different channels
- \rightarrow track also **other hadrons**
- \rightarrow add other nuclear effects...



Lepton-nucleus scattering

General remarks

- Leptons are Standard Model particles
- $\rightarrow~$ there are better ways to model their interactions than billiard balls
- Lepton-nucleon cross section is lower than nucleon-nucleon
- ightarrow we do not shoot at nuclei, we start from the primary interaction
- $\rightarrow \,$ we need an external lepton-nucleus cross section model
 - Lepton-nucleus interactions require great precision
- \rightarrow common detector simulation software do not contain these processes

Independent variables

Unknown particle 4-vectors	Variables	Physical effects	Variables	
Initial lepton	4	Particles on-shell $-(3 + N)$		
Target nucleus	4	4-momentum conservation –4		
Final lepton	4	Target rest-frame -3		
Remnant nucleus	4	Fixed projectile direction	Fixed projectile direction -2	
Outgoing hadrons	4N Fixed incoming energy		-1	
	16 + 4N		-13 - N	
			3+3N	

Table 1.2: Counting the number of independent variables describing lepton-nucleus interactions while detecting N hadronic particles in the process, summing over the spin of the outgoing lepton, and leaving the remnant nucleus undetected.

Cross sections

Target	Process	Properties	Example formula
	(Quasi)elastic	N = 0, all particles on-shell	$\frac{d\sigma}{dQ^2}$
Free nucleon	Inelastic	N = 0, excited hadronic system	$\frac{d^2\sigma}{dQ^2dW}$
	SPP	N = 1, all particles on-shell	$\frac{d^4\sigma}{dQ^2dWd\Omega_{\pi}}$
Nucleus	Inclusive	N = 0, all hadrons integrated	$\frac{d^2\sigma}{d\Omega'}$
	1p1h	N = 1, detected one nucleon	$\frac{d^5\sigma}{dE'd\Omega'd\Omega_{N'}}$
	2p2h	N = 2, detected two nucleons	$\frac{\mathrm{d}^8\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\Omega'\mathrm{d}\mathrm{E}_{\mathrm{N}'}\mathrm{d}\Omega_{\mathrm{N}'}\mathrm{d}\Omega_{\mathrm{N}''}}$
	SPP	N = 2, detected nucleon and π	$rac{\mathrm{d}^8\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\Omega'\mathrm{d}\mathrm{E}_\pi\mathrm{d}\Omega_\pi\mathrm{d}\Omega_{\mathrm{N}'}}$

Table 1.3: The dimensionality of cross section formulas for the most basic lepton scattering scenarios, off the free nucleon or on the nucleus.

Example II: Quasielastic neutrino-nucleon scattering

Quasielastic scattering on a free nucleon

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \begin{pmatrix} \nu_l + n \rightarrow l^- + p \\ \bar{\nu}_l + p \rightarrow l^+ + n \end{pmatrix} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

Notation

- $\circ~$ constants: M nucleon mass, G_F Fermi constant, θ_C Cabbibo angle
- $q^2 = (k k')^2 = (p' p)^2$ four-momentum squared, where k, k', p, p' are four-momenta of initial and final lepton, initial and final nucleon

 $\circ~E_{\nu}$ - neutrino energy

$$\circ~~s=(k+k')^2$$
 and $u=(k-p')^2$ - Mandelstam variables

Quasielastic scattering on a free nucleon

Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \begin{pmatrix} \nu_l + n \rightarrow l^- + p \\ \bar{\nu}_l + p \rightarrow l^+ + n \end{pmatrix} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

General idea

- $\circ~$ having k and p, generate k' and p'
- $\circ~$ calculate q^2 and $(s-u)=4ME_\nu+q^2-m^2$ based on the generated kinematics
- $\circ~$ calculate the cross section
- $\circ~$ repeat N times and the result is given by

$$\sigma_{total} \sim \frac{1}{N} \sum_{i}^{N} \sigma(q_{i}^{2})$$

Generating kinematics

- Let's consider kinematics in the center-of-mass system
- Mandelstam s is invariant under Lorentz transformation

$$s = (k+p)^2 = (E+E_p)^2 - (\vec{k}+\vec{p})^2 = (E^*+E_p^*)^2$$

 $\circ~\sqrt{s}$ is the total energy in CMS

$$\sqrt{s} = \mathsf{E}^* + \mathsf{E}^*_{p} = \sqrt{p^{*2} + m^2} + \sqrt{p^{*2} + M^2}$$

 $\circ~$ We will use it to calculate p^{\ast}

Generating kinematics

• After some simple algebra

$$\begin{split} \sqrt{s} &= E^* + E_p^* = \sqrt{p^{*2} + m^2} + \sqrt{p^{*2} + M^2} \\ \sqrt{s} &= E^* + \sqrt{E^{*2} - m^2 + M^2} \\ s &= E^{*2} + E^{*2} - m^2 + M^2 + 2E^*E_p^* \\ s &= 2E^*(E^* + E_p^*) - m^2 + M^2 \\ s &= 2E^*\sqrt{s} - m^2 + M^2 \end{split}$$

and

$$\begin{split} \mathsf{E}^* &= \frac{s+m^2-M^2}{2\sqrt{s}}\\ \mathsf{E}^*_p &= \frac{s+M^2-m^2}{2\sqrt{s}} \end{split}$$

• We use this result to get

$$p^* = \sqrt{E^{*2} - m^2} = \frac{[s - (m - M)^2][s - (m + M)^2]}{2\sqrt{2}}$$

Kajetan Niewczas

NuINT School 2024

Generating events

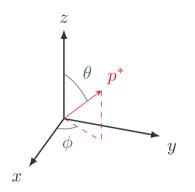
• We use spherical coordinate system to determine momentum direction in CMS

$$\vec{p}^* = p^* \cdot (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

• Generating random angles

$$\phi^* = 2\pi \cdot \text{random}[0; 1] \quad \rightarrow \quad \sin \phi^*, \cos \phi^*$$
$$\cos \theta^* = 2 \cdot \text{random}[0; 1] - 1 \quad \rightarrow \quad \sin \phi^*, \cos \phi^*$$

 $\circ~$ Now, we need to come back to the LAB frame



Boosting between frames

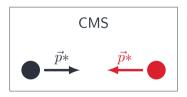
• Lorentz boost in the direction $\hat{n} = \frac{\vec{v}}{v}$ of (t, \vec{r})

$$\begin{split} t' &= \gamma(t - \nu \hat{n} \cdot \vec{r}) \\ r' &= \vec{r} + (\gamma - 1)(\hat{n} \cdot \vec{r})\hat{n} - \gamma t \nu \hat{n} \end{split}$$

$$\vec{\nu} = \frac{\vec{p}_{\nu} + \vec{p}_{N}}{E_{\nu} + E_{N}}$$

- $\circ~$ Boost from LAB to CMS in the \vec{v} direction
- Boost from CMS to LAB in the $-\vec{v}$ direction





Llewellyn-Smith formula

$$\frac{d\sigma}{d|q^2|} \begin{pmatrix} \nu_l + n \rightarrow l^- + p \\ \bar{\nu}_l + p \rightarrow l^+ + n \end{pmatrix} = \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_\nu^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right]$$

Calculation

- once we have p', k' in the LAB frame, we can calculate q^2 ans (s u)
- $\circ~$ once we have $q^2,$ we can calculate $A(q^2),$ $B(q^2),$ and $C(q^2)$
- $\circ\;$ we have all we need to calculate the final result
- $\rightarrow \,$ but we changed variables so we need a Jacobian!

• Express q² in terms of the lepton angle (in CMS)

 $q^2 = (k - k')^2 = (k^* - k'^*)^2 = m^2 - 2k^* \cdot k'^* = m^2 = 2EE' + 2|\vec{k}^*||\vec{k}'^*|\cos\theta^*$

• Thus, the Jacobian is given by

$$\mathrm{d}q^2 = 2|\vec{k}^*||\vec{k}'^*|\,\mathrm{d}\cos\theta^*$$

• The total cross section is given by

$$\begin{split} \sigma &= \int_{-1}^{1} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_v^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right] 2 |\vec{k}^*| |\vec{k}'^*| \, d\cos \theta^* \\ \sigma_{MC} &= \frac{2}{N} \sum_{i}^{N} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_v^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right] 2 |\vec{k}^*| |\vec{k}'^*| \end{split}$$

Kajetan Niewczas

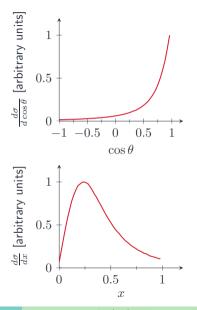
• We want to avoid any sharp peaks as they affect our efficiency and accuracy

Let's change the variable once again

 $\cos \theta^* = 1 - 2x^2, \ x \in [0; 1]$

• Notice, the new Jacobian and integration limits

$$2\int_{-1}^{1} d\cos\theta^{*} \ \rightarrow \ \int_{1}^{0} dx \ (-4x) \ \rightarrow \ \int_{0}^{1} 4x \ dx$$



• Finally, the total cross section is given by

$$\sigma = \int_{-1}^{1} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_v^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right] 2|\vec{k}^*||\vec{k}'^*| 4x \, dx$$

$$\sigma_{MC} = \frac{1}{N} \sum_{i}^{N} \frac{M^2 G_F^2 \cos \theta_C}{8\pi E_v^2} \left[A(q^2) \mp B(q^2) \frac{(s-u)}{M^2} + C(q^2) \frac{(s-u)^2}{M^4} \right] 2|\vec{k}^*||\vec{k}'^*| 4x \, dx$$

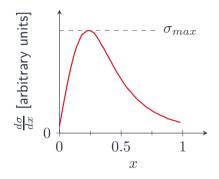
- In conclusion: do some kinematics, add some boosts between CMS and LAB, change the integration variable several times... and you are ready to calculate the cross section
- $\rightarrow\,$ Now, we need to generate some events that are distributed according to the cross section formula

Generating events

- Take a random x from [0; 1]
- Do the kinematics

 $\begin{array}{rcl} x \ \rightarrow \ \cos \theta^{*} \\ \cos \theta^{*} \ \rightarrow \ k^{\prime *}, p^{\prime *} \\ k^{\prime *}, p^{\prime *} \ \rightarrow \ k^{\prime}, p^{\prime} \end{array}$

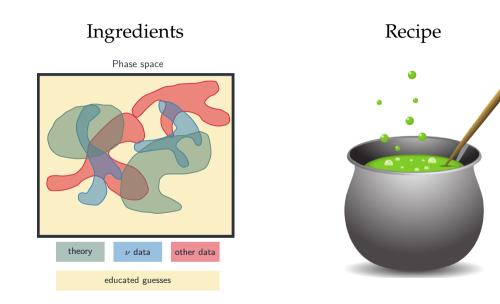
- Calculate the cross section
- Accept an event with the probability $P(x) = \frac{\sigma(x)}{\sigma_{max}}$

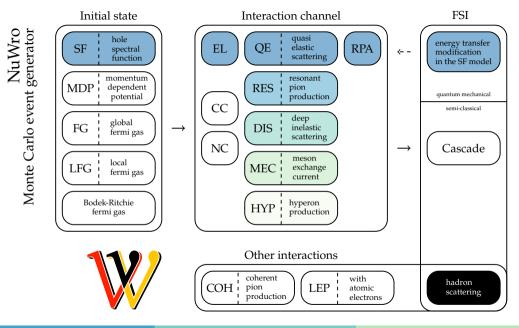


Are we there yet?

A few more steps...

- \rightarrow add **other dynamics**: single-pion production, deep inelastic scattering...
- \rightarrow add support for **nuclei** as **targets**
- \rightarrow if you have a nucleus, add some **two-body current interactions**
- → if you have a nucleus, add some nuclear effects: **Pauli blocking**, final-state interactions...
- $\rightarrow~$ add support for **neutrino beams**
- $\rightarrow~{\rm add~support~for~detector~geometries}$
- \rightarrow add some **reweighting**
- ... and your MC generator is done!





Kajetan Niewczas

Supplementary material

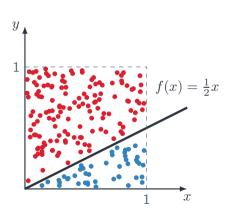
MC integration (hit-or-miss method)

Let's consider the following integral

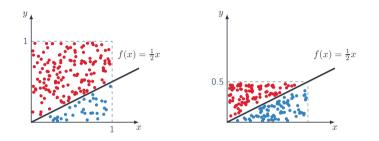
$$\int_0^1 f(x) dx = \int_0^1 \left(\frac{1}{2}x\right) dx = \frac{1}{2} \frac{x^2}{2} \Big|_0^1 = \frac{1}{4}$$

- ightarrow take a random point from a [0, 1] imes [0, 1] square
- \rightarrow compare it to your f(x)
- \rightarrow repeat *N* times
- \rightarrow count *n* points below the function
- $\rightarrow \,$ your result is given by

$$\int_0^1 f(x) dx = A_{\Box} \cdot \frac{n}{N}$$



Optimizations



- We want to avoid generating "red" points as they do not contribute to your integral
- Any rectangle can be chosen as far as it contains maximum of *f*(*x*) in given range

Optimizations

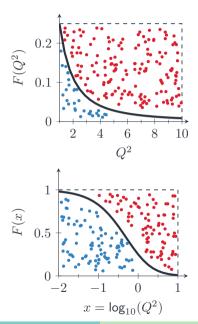
• Consider the following function

$$F(Q^2) = \frac{1}{(1+Q^2)^2}$$

- Integrating this function over Q^2 is highly inefficient
- One can integrate by substitution to get better performance, e.g.

$$x = \log_{10} Q^2$$

 \rightarrow don't forget about the Jacobian!



NuINT School 2024

MC integration (crude method)

Let's consider the following integral again

$$\int_0^1 f(x) dx = \int_0^1 \left(\frac{1}{2}x\right) dx = \frac{1}{2} \frac{x^2}{2} \Big|_0^1 = \frac{1}{4}$$

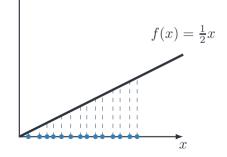
y

• One can approximate the integral

$$\int_a^b f(x) dx = \frac{b-a}{N} \sum_i^N f(x_i)$$

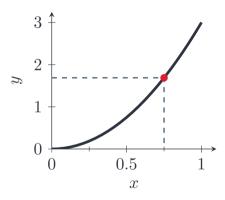
where x_i is a random number from [a, b]

• It can be shown that this method is more accurate



Random numbers from probability density functions

- How to generate a random number from probability density function?
- Let's consider $f(x) = 3x^2$
- Which means that x = 1 should be thrown 2 times more often than $x = \frac{\sqrt{2}}{2}$



Cumulative distribution function

• Cumulative distribution function of a random variable *X*:

$$F(x) = P(X \leq x)$$

• Discrete random variable X:

$$F(x) = \sum_{x_i \leq x} f(x_i)$$

where *f* is a probability mass function (PMF)

• Continuous random variable X:

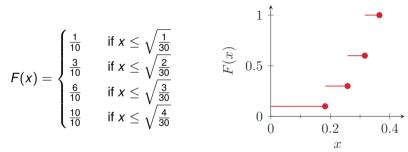
$$F(x) = \int_{-\infty}^{x} f(t) \mathrm{d}t$$

where *f* is a probability density function (PDF)

Kajetan Niewczas	;
------------------	---

Cumulative distribution function - discrete example

- Probability mass function $f(x) = 3x^2$ with discrete random variables X is $\{\sqrt{\frac{1}{30}}, \sqrt{\frac{2}{30}}, \sqrt{\frac{3}{30}}, \sqrt{\frac{4}{30}}\}$
- CDF is given by



 \rightarrow generate a random number *u* from [0, 1]

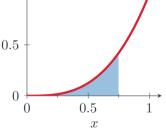
$$ightarrow$$
 if $u \leq 0.1$: $x = \sqrt{\frac{1}{30}} \qquad
ightarrow$ else if $u \leq 0.3$: $x = \sqrt{\frac{2}{30}}$...

Cumulative distribution function - continuous example

- Probability density function f(x) = 3x²
 with continuous random variables X range [0, 1]
- CDF is given by

 $F(x) = \int_0^x f(t) dt = x^3 \qquad \qquad 1$

- \rightarrow generate a random number *u* from [0, 1]
- → find x for which F(x) = u, i.e. $x = F^{-1}(u)$

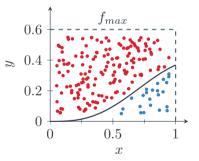


• Unfortunately, usually *F*⁻¹ is unknown, which makes this method pretty useless (at least directly)

Acceptance-rejection method

- Let's consider a function $f(x) = A \cdot x^3 \cdot e^{-x^2}$ with $x \in [0, 1], A = \frac{2e}{e-2}$
- CDF is given by $F(x) = \frac{N}{2}(x^2 1)e^{-x^2}$ and we don't know F^{-1} !
- \rightarrow find a suitable $f_{\max} \geq max(f)$
- \rightarrow take a random *x*
- \rightarrow generate a random *u* from [0, f_{max}]

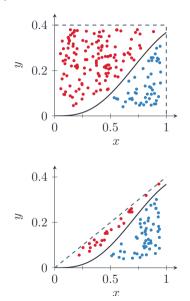
$$\rightarrow$$
 accept if $u \leq f(x)$ ($P = \frac{f(x)}{f_{\max}}$)



 The same procedure as the integration via hit-or-miss but focusing on accepted points, not the integral itself

Acceptance-rejection method - optimization

- The area under the plot of f(x) is
 0.13, while the total area is 0.4
- We can try to limit the number of wasted points taking a better envelope
- For g(x) = 0.4x the total area is 0.2, so we speed up twice
- ightarrow The culumative distribution is $G(x) = x^2, G^{-1}(x) = \sqrt{x}$
- \rightarrow Generate a random $u \in [0, 1]$
- → Calculate $x = G^{-1}(u)$ and accept with probability P = f(x)/g(x)

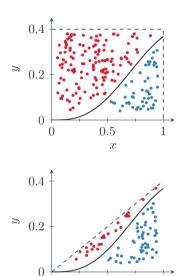


Importance sampling

 Sampling more significant parts of phase space more often

$$\int_0^1 f(x) \mathrm{d}x$$
$$\rightarrow \int_0^1 \frac{f(x)}{g(x)} [g(x) \mathrm{d}x]$$

• Mathematically speaking all three methods are equivalent



0.5

x

0