
How generators work ...and why it’s wrong*
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Figure 1: Experimental efforts in the worldwide quest for the understanding of neutrino-oscillations and
neutrino-nucleus scattering, current: T2K, NOvA, MINERvA, MicroBooNE and future: Hyper-K, DUNE.
(Bottom left) produced neutrino flux predictions; (bottom center) flux-averaged probability of non-oscillation
as a function of the propagation distance; (bottom right) total charged current neutrino-nucleon cross section,
where "QEL" denotes quasielastic scattering, "RES"—single-pion production, and "DIS"—community slang
for both shallow- and deep-inelastic scattering.

P(νµ → νe) ≃ sin2(2θ) sin2
(
1.27∆m2L
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)

oscillation amplitude frequency

ACP =
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P(νµ→νe)+P(ν̄µ→ν̄e)

asymmetry oscillation ratio
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Nuclear responseNuclear response
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Basic aspects of the methodology
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From Solitaire to the Monte Carlo method
At Los Alamos, Stanisław Ulam, John von Neumann, Nicholas Metropolis and others invented a
method to obtain stochastic predictions for systems too complex to be solved analytically.

→ We can build a complex model using
simple components

→ Every required decision is made
stochastically (randomly)

→ We run such a model N times and
analyze the output

→ For N → ∞ we approach the correct
result for the model

Electronic Numerical Integrator and Computer (ENIAC)

Kajetan Niewczas NuINT School 2024 April 13th 2024 6 / 39



Monte Carlo integration (hit-or-miss method)
Let’s consider the following integral∫1
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→ Take a random point from [0; 1]× [0; 1]

→ Compare it to your f(x)

→ Repeat N times

→ Count n points below the function

→ The result is given by
∫1
0 f(x) dx = A□ n

N

MC integration (hit-or-miss method)
Let’s consider the following integral
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! take a random point from
a [0, 1] ⇥ [0, 1] square

! compare it to your f (x)

! repeat N times

! count n points below the
function

! your result is given by
Z 1

0
f (x)dx = A⇤ · n

N

MC integration (hit-or-miss method)

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators
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Lets do the following integration using MC method:
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� take a random point from
the [0, 1] ⇥ [0, 1] square

� compare it to your f(x)

� repeat N times

� count n points below the
function

� you results is given by

Z 1

0

f(x)dx = P� · n

N
=

n

N
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x

f(x) = 1
2x

1

1
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Monte Carlo integration (crude method)
Let’s consider the following integral (again)∫1

0

f(x) dx =
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→ One can approximate the integral by∫b
a

f(x) dx =
b− a

N

N∑
i

f(xi)

where xi is a random number from [a;b]

→ This method leads to slightly higher precision

MC integration (crude method)
Let’s consider the following integral again

Z 1

0
f (x)dx =
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0
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• One can approximate the
integral

Z
b

a

f (x)dx =
b � a

N

NX

i

f (xi)

where xi is a random number
from [a, b]

• It can be shown that this method
is more accurate

MC integration (crude method)

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators
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Lets do the following integration using MC method once again:

Z 1
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f(x)dx =
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� One can approximate
integral

Z b

a

f(x)dx � b � a

N

NX

i=1

f(xi)

where xi is a random
number from [a, b]

� It can be shown that crude
method is more accurate
than hit-or-miss

� We will skip the math and
look at some comparisons

y

x

f(x) = 1
2x
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Accept-or-reject algorithm
Let’s generate a set of points that follows the probability distribution given by our function

f(x) =
1

2
x

→ Find a suitable fmax ⩾ max(f)

→ Take a random x from [0; 1]

→ Generate a random u from [0, fmax]

→ Accept the point x if u ⩽ f(x) (P = f(x)
fmax

)

MC integration (hit-or-miss method)
Let’s consider the following integral
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! take a random point from
a [0, 1] ⇥ [0, 1] square

! compare it to your f (x)

! repeat N times

! count n points below the
function

! your result is given by
Z 1

0
f (x)dx = A⇤ · n

N

MC integration (hit-or-miss method)

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators
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Lets do the following integration using MC method:
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� take a random point from
the [0, 1] ⇥ [0, 1] square

� compare it to your f(x)

� repeat N times

� count n points below the
function

� you results is given by

Z 1

0

f(x)dx = P� · n

N
=

n

N

y

x

f(x) = 1
2x

1

1

Kajetan Niewczas Monte Carlo event generators 23.07.2019 6 / 61Kajetan Niewczas NuINT School 2024 April 13th 2024 9 / 39



Optimization

MC integration (hit-or-miss method)
Let’s consider the following integral
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! take a random point from
a [0, 1] ⇥ [0, 1] square

! compare it to your f (x)

! repeat N times

! count n points below the
function

! your result is given by
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0
f (x)dx = A⇤ · n

N

MC integration (hit-or-miss method)

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary
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Lets do the following integration using MC method:
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� take a random point from
the [0, 1] ⇥ [0, 1] square

� compare it to your f(x)

� repeat N times

� count n points below the
function
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OptimizationsOptimization of MC

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 13 / 96
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� You want to avoid generating “red” points as they do not
contribute to your integral

� You can choose any rectangle as far as it contains maximum of
f(x) in given range

• We want to avoid generating “red” points as they do not contribute to
your integral

• Any rectangle can be chosen as far as it contains maximum of f (x)
in given range

Kajetan Niewczas Monte Carlo event generators 23.07.2019 7 / 61

→ We wish to increase the efficiency of our calculation by avoiding loosing the "red" points

→ We can choose any envelope to our function as long as it contains the maximum of f(x)
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Importance sampling

Let’s consider a different function

f(x) = A x3 e−x2

with x in [0; 1] and A = 2e
e−2

◦ The area under f(x) is ∼ 0.13, while the total is 0.4

◦ Having a good x-dep. envelope increases efficiency

→ For, e.g., g(x) = 0.4x, the total area is 0.2

→ We can accept points using a probability

P(x) = f(x)/g(x)

Importance sampling

• Sampling more significant parts of
phase space more often

Z 1

0
f (x)dx

!
Z 1

0

f (x)

g(x)
[g(x)dx ]

• Mathematically speaking all three
methods are equivalent

Acceptance-rejection method - optimization

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 25 / 96

� The area under the plot of
f(x) is ⇠ 0.13

� The total area is 0.4

� Thus, only about 30% of
points gives contribution to
the final distribution

� One can find g(x) for
which CDF method is
possible and which
encapsulates f(x) in given
range and generate x
according to g(x)

� For g(x) = 0.4x the total
area is 0.2, so we speed up
twice
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Importance sampling

Let’s consider a different function

f(x) = A x3 e−x2

with x in [0; 1] and A = 2e
e−2

◦ Alternatively, we could change our random numbers
from non-uniform distributions

◦ We can pick more points where the function is larger

→ We can sample points from g(x) = 0.4x, and correct
the probability ∫1

0

f(x) dx →
∫1
0

f(x)

g(x)
[g(x)dx]

Importance sampling

• Sampling more significant parts of
phase space more often

Z 1

0
f (x)dx

!
Z 1

0

f (x)

g(x)
[g(x)dx ]

• Mathematically speaking all three
methods are equivalent

Acceptance-rejection method - optimization

Monte Carlo method
Bu�on’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 25 / 96

� The area under the plot of
f(x) is ⇠ 0.13

� The total area is 0.4

� Thus, only about 30% of
points gives contribution to
the final distribution

� One can find g(x) for
which CDF method is
possible and which
encapsulates f(x) in given
range and generate x
according to g(x)

� For g(x) = 0.4x the total
area is 0.2, so we speed up
twice
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Problems to consider

◦ How to generate random numbers from a uniform distribution?

◦ What does it mean for a random number generator to be good?

◦ How to generate numbers from discrete random variables?

◦ How to generate numbers from continuous random variables?

◦ How to generate numbers from arbitrary distributions?
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Example I: Nucleon propagation
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Classical particle propagating through a medium

Probability for a particle to propagate over a distance x with no interactions is

P(x) =
1

λ
exp(−x/λ)

where λ = (ρσ)−1 is the mean free path, while ρ is target density and σ is interaction cross section

We can try to apply it to nucleons in nuclei because:

λ̃ ≪ d < λ < R

where λ̃ is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius

N. Metropolis et al., Phys.Rev. 188 (1958) 185, Phys.Rev. 188 (1958) 204
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Application to nuclei (space-like approach)
◦ Pick a random starting point in the nucleus

◦ Propagate the nucleon in discrete steps, e.g., ∆x = 0.2 fm

◦ At every step, we sample x from P(x) = λ−1 exp(−x/λ)

→ If x < ∆x, then the nucleon-nucleon interaction happens

◦ The probability that the nucleon leaves the nucleus with
no re-interactions is called transparency

→ Our procedure solves an integral

T =

∫2R
0

fR(z)e
−z/λ dz

where fR(z) is the distribution of the starting points

ẑ

ŷ

x̂

R

(x, y, z) (x, y, z′)
L
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Nuclear transparency
◦ For fixed density (uniform ball), the solution is given analytically

T = 3e−A

(
1

A2
+

1

A3

)
+ 3

(
1

2A
−

1

A3

)

where A = 2R/λ = 2Rρσ

→ e.g., for ρ = 0.16 fm−3, σ = 40 mb, and R = 6 fm, we get T ≃ 0.189
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Intranuclear cascade

→ implement realistic density
profiles and cross sections

→ add the kinematics of each
interaction

→ respect Pauli blocking

→ make sure that scattered particles
also propagate

→ introduce branching ratios of
different channels

→ track also other hadrons

→ add other nuclear effects...

νμ

p

νμ

n

π+

π+

πO

Absorption

Charge Exchange
Elastic

Scattering

π+ πO

Pion Production

T. Golan
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Lepton-nucleus scattering
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General remarks

◦ Leptons are Standard Model particles

→ there are better ways to model their interactions than billiard balls

◦ Lepton-nucleon cross section is lower than nucleon-nucleon

→ we do not shoot at nuclei, we start from the primary interaction

→ we need an external lepton-nucleus cross section model

◦ Lepton-nucleus interactions require great precision

→ common detector simulation software do not contain these processes
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Independent variables
�.�. THEORETICAL PICTURE OF NEUTRINO INTERACTIONS 23

Unknown particle 4-vectors Variables

Initial lepton 4

Target nucleus 4

Final lepton 4

Remnant nucleus 4

Outgoing hadrons 4N

16 + 4N

Physical effects Variables

Particles on-shell -(3 + N)

4-momentum conservation -4

Target rest-frame -3

Fixed projectile direction -2

Fixed incoming energy -1

-13 - N

3 + 3N

Table 1.2: Counting the number of independent variables describing lepton-nucleus interactions while
detecting N hadronic particles in the process, summing over the spin of the outgoing lepton, and leaving
the remnant nucleus undetected.

every four-momentum involved. Then, we can think of particular equations constraining the
process that will reduce the number of independent variables. All on-shell particles have a known
relation between their energy and momentum (E2 = p2 + m2), which reduces the number by
3 + N. Note that the undetected remnant nucleus is a hadronic system whose excitation is an
additional degree of freedom and cannot be constrained this way. The following constraints
come from the energy and momentum conservation laws, contributing to eliminating 4 variables.
Finally, there are methods to optimize the scattering conditions: working in the target rest frame,
fixing the coordinate system relative to the projectile, and selecting the incoming lepton energy.
They allow us to reduce the number of variables by 6 to the final number of 3 + 3N independent
variables needed to obtain complete information about each scattering event. This formula shows
that the process phase space grows by 3 dimensions with every additional detected particle in
the final state, which explains the increasing difficulty in modeling more complex lepton-nucleus
scattering processes.

To further illustrate this, we look at the most crucial quantity—the cross section (�), directly
proportional to the interaction probability for the given set of independent variables. We com-
monly write it in its differential forms, where every derivative is responsible for behavior over a
specific degree of freedom. For example, a differential cross section d2�/d⌦ is proportional to
the probability of finding an outgoing particle in the (two-dimensional) solid angle ⌦. Table 1.3
presents example formulas for cross sections of different scattering channels discussed before.
Note that the dimensionality of these formulas is always lower by 1 degree from the total num-
ber of independent variables for each process. It stems from one more global symmetry, which
states that a rotation of the whole system should leave the cross section unchanged, effectively
eliminating one � angle. In the table, we can see how the effects described before play a role in
the dimensionality of each formula: an excited final state leading to one more, and every particle
detected leading to 3 additional variables. Moreover, we interpret the particular cross sections
differently, depending on the investigated dynamics of the interaction. For example, if we model
lepton-nucleus scattering with two nucleons knocked-out to the continuum, the 8-dimensional
formula is called the exclusive cross section due to the complete information about each event.
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Cross sections
24 �. INTRODUCTION

Target Process Properties Example formula

Free nucleon

(Quasi)elastic N = 0, all particles on-shell d�
dQ2

Inelastic N = 0, excited hadronic system d2�
dQ2dW

SPP N = 1, all particles on-shell d4�
dQ2dWd⌦⇡

Nucleus

Inclusive N = 0, all hadrons integrated d2�
d⌦0

1p1h N = 1, detected one nucleon d5�
dE0d⌦0d⌦N0

2p2h N = 2, detected two nucleons d8�
dE0d⌦0dEN0d⌦N0d⌦N 00

SPP N = 2, detected nucleon and ⇡ d8�
dE0d⌦0dE⇡d⌦⇡d⌦N0

Table 1.3: The dimensionality of cross section formulas for the most basic lepton scattering scenarios, off
the free nucleon or on the nucleus.

Integrating over one of the nucleons, which experimentally means detecting only one of them, we
calculate the semi-inclusive (semi-exclusive) cross section. Finally, by integrating over all hadrons
and detecting only the final lepton, we examine the inclusive cross section. As discussed in Section
II, the phase space of independent variables needed to describe a particular event grows with 3
dimensions for every particle detected in the final state. It is a common approach to tabularize
models, which are too computationally demanding to be explicitly implemented in the generators.
Analogously, for 1-particle-1-hole (quasielastic) processes, one nucleon detected in the final state
leads to an exclusive cross section. This discussion shows that providing theoretical predictions
for lepton-nucleus interactions requires calculations across a multidimensional phase space of
potential event kinematics with different occurrence probabilities.

Many-body nuclear problem

One can perceive the lepton-nucleus scattering process in three different yet interconnected stages:
the properties of the initial nuclear state, the (one-boson) interaction dynamics, and the final state
interactions of knocked-out nucleons and produced pions. As the middle one is the very subject
of this thesis, at this point, we will focus on the more philosophical aspects of nuclear modeling.
Fig. 1.14a presents a typical behavior of the nucleon-nucleon strong interaction potential, with
a hard repulsive core while approaching r12 ! 0 and an attractive dip around r12 ' 1 fm.
Comparing these values to the size of nucleons (⇡ 1 fm), we conclude that treating bound nucleons
independently in an averaged mean-field-like potential is justified. This approach, called the
independent-particle model (IPM), involves a standard approximation to study intermediate-energy
nuclear processes. As the simplest possible IPM-like solution, one can think of a Fermi gas of
nucleons (FG) [97], parametrized through the Fermi momentum:

pF =
�
3⇡2⇢avg

�1/3

, (1.3.1)
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Example II: Quasielastic neutrino-nucleon scattering
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Quasielastic scattering on a free nucleon

Llewellyn-Smith formula

dσ
d|q2|

(
νl + n → l− + p
ν̄l + p → l+ + n

)
=

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]

Notation

◦ constants: M - nucleon mass, GF - Fermi constant, θC - Cabbibo angle

◦ q2 = (k− k′)2 = (p′ − p)2 - four-momentum squared,
where k, k′, p, p′ are four-momenta of initial and final lepton, initial and final nucleon

◦ Eν - neutrino energy

◦ s = (k+ k′)2 and u = (k− p′)2 - Mandelstam variables
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Quasielastic scattering on a free nucleon
Llewellyn-Smith formula

dσ
d|q2|

(
νl + n → l− + p
ν̄l + p → l+ + n

)
=

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]

General idea

◦ having k and p, generate k′ and p′

◦ calculate q2 and (s− u) = 4MEν + q2 −m2 based on the generated kinematics

◦ calculate the cross section

◦ repeat N times and the result is given by

σtotal ∼
1

N

N∑
i

σ(q2
i )

Kajetan Niewczas NuINT School 2024 April 13th 2024 26 / 39



Generating kinematicsGenerating kinematicsGenerating kinematics

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB � CMS
Cross section
Generating events
A few more steps

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 30 / 96

LAB

~p⌫
~pN

CMS

~p� ~p�

� Lets consider kinematics in center-of-mass system

� Mandelstam s is invariant under Lorentz transformation

s = (k + p)2 = (E + Ep)
2 � (~k + ~p)2 = (E� + E�

p)2

�
p

s is the total energy in CMS

p
s = E� + E�

p =
p

p�2 + m2 +
p

p�2 + M2

� We will use it to calculate p�

• Let’s consider kinematics in the center-of-mass system

• Mandelstam s is invariant under Lorentz transformation

s = (k + p)2 = (E + Ep)
2 � (~k + ~p)2 = (E⇤ + E

⇤
p )2

• p
s is the total energy in CMS

p
s = E

⇤ + E
⇤
p =

p
p⇤2 + m2 +

p
p⇤2 + M2

• We will use it to calculate p
⇤
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◦ Let’s consider kinematics in the center-of-mass system

◦ Mandelstam s is invariant under Lorentz transformation

s = (k+ p)2 = (E+ Ep)
2 − (k⃗+ p⃗)2 = (E∗ + E∗

p)
2

◦ √
s is the total energy in CMS

√
s = E∗ + E∗

p =
√
p∗2 +m2 +

√
p∗2 +M2

◦ We will use it to calculate p∗
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Generating kinematics
◦ After some simple algebra

√
s = E∗ + E∗

p =
√
p∗2 +m2 +

√
p∗2 +M2

√
s = E∗ +

√
E∗2 −m2 +M2

s = E∗2 + E∗2 −m2 +M2 + 2E∗E∗
p

s = 2E∗(E∗ + E∗
p) −m2 +M2

s = 2E∗√s−m2 +M2

and
E∗ =

s+m2 −M2

2
√
s

E∗
p =

s+M2 −m2

2
√
s

◦ We use this result to get

p∗ =
√
E∗2 −m2 =

[s− (m−M)2][s− (m+M)2]

2
√
2
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Generating events

◦ We use spherical coordinate system to determine
momentum direction in CMS

p⃗∗ = p∗ · (sin θ cosϕ, sin θ sinϕ, cos θ)

◦ Generating random angles

ϕ∗ = 2π · random[0; 1] → sinϕ∗, cosϕ∗

cos θ∗ = 2 · random[0; 1] − 1 → sinϕ∗, cosϕ∗

◦ Now, we need to come back to the LAB frame

Generating kinematics

• We use spherical coordinate
system to determine momentum
direction in CMS

~p⇤ = p
⇤·(sin ✓ cos�, sin ✓ sin�, cos ✓)

Generating kinematics

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB � CMS
Cross section
Generating events
A few more steps

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 32 / 96

� We use spherical coordinate
system to determine
momentum direction in
CMS:

~p� = p�·(sin ✓ cos�, sin ✓ sin�, cos ✓)

x

y

z

p�

�

✓

� Generate random angles:

� = 2⇡ · random[0, 1] � sin�, cos�

cos ✓ = 2 · random[0, 1] � 1 � sin ✓, cos ✓

� All we need to do is to go back to LAB frame

• Generate random angles

� = 2⇡ · random[0, 1] ! sin�, cos�

cos ✓ = 2 · random[0, 1] � 1 ! sin ✓, cos ✓

• Now, we need to come back to the LAB frame
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Boosting between frames

◦ Lorentz boost in the direction n̂ = v⃗
v

of (t, r⃗)

t′ = γ(t− vn̂ · r⃗)
r′ = r⃗+ (γ− 1)(n̂ · r⃗)n̂− γtvn̂

◦ In our case
v⃗ =

p⃗ν + p⃗N

Eν + EN

◦ Boost from LAB to CMS in the v⃗ direction

◦ Boost from CMS to LAB in the −v⃗ direction

Boosting between frames

• Lorentz boost in the direction n̂ = ~v
v

of (t ,~r)

t
0 = �(t � vn̂ ·~r)

r
0 = ~r + (� � 1)(n̂ ·~r)n̂ � �tv n̂

• In our case

~v =
~p⌫ + ~pN

E⌫ + EN

• Boost from LAB to CMS in ~v
direction

• Boost from CMS to LAB in �~v
direction

LAB � CMS

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB � CMS
Cross section
Generating events
A few more steps

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators
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� Lorentz boost in direction n̂ = �v
v of (t, ~r):

t0 = � (t � vn̂ · ~r)
~r0 = ~r + (� � 1)(n̂ · ~r)n̂ � �tvn̂

� In our case

~v =
~p⌫ + ~pN

E⌫ + EN

� Boost from LAB to CMS in
~v direction

� Boost from CMS to LAB in
�~v direction

LAB

~p⌫
~pN

CMS

~p� ~p�

Kajetan Niewczas Monte Carlo event generators 23.07.2019 24 / 61

Kajetan Niewczas NuINT School 2024 April 13th 2024 30 / 39



Calculating the cross section

Llewellyn-Smith formula

dσ
d|q2|

(
νl + n → l− + p
ν̄l + p → l+ + n

)
=

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]

Calculation

◦ once we have p′, k′ in the LAB frame, we can calculate q2 ans (s− u)

◦ once we have q2, we can calculate A(q2), B(q2), and C(q2)

◦ we have all we need to calculate the final result

→ but we changed variables so we need a Jacobian!
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Calculating the cross section

◦ Express q2 in terms of the lepton angle (in CMS)

q2 = (k− k′)2 = (k∗ − k′∗)2 = m2 − 2k∗ · k′∗ = m2 = 2EE′ + 2|⃗k∗||⃗k′∗| cos θ∗

◦ Thus, the Jacobian is given by
dq2 = 2|⃗k∗||⃗k′∗| d cos θ∗

◦ The total cross section is given by

σ =

∫1
−1

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]
2|⃗k∗||⃗k′∗| d cos θ∗

σMC =
2

N

N∑
i

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]
2|⃗k∗||⃗k′∗|
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Calculating the cross section

◦ We want to avoid any sharp peaks as they affect our
efficiency and accuracy

◦ Let’s change the variable once again

cos θ∗ = 1− 2x2, x ∈ [0; 1]

◦ Notice, the new Jacobian and integration limits

2

∫1
−1

d cos θ∗ →
∫0
1

dx (−4x) →
∫1
0

4x dx

Calculating the cross section

• We want to avoid any sharp peaks

• They affect our efficiency and
accuracy

• Let’s change the variable once
again

cos ✓ = 1 � 2x
2, x 2 [0, 1]

• Notice a new Jacobian and
integration limits

2
Z 1

�1
d cos ✓ !

Z 0

1
dx(�4x) !

Z 1

0
4xdx

Calculating cross section

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB � CMS
Cross section
Generating events
A few more steps

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 37 / 96

� We want to avoid any
sharp peaks

� They a�ect our e�ciency
and accuracy

� Lets change variable once
again:

cos ✓ = 1 � 2x2

where x 2 [0, 1]

� Note extra Jacobian and
new integration limits

2

1Z

�1

d(cos ✓) !
0Z

1

dx(�4x) !
1Z

0

4xdx

�1 �0.5 0 0.5 1
0

0.5

1

cos ✓

d
�

d
c
o
s
�

[a
rb

it
ra

ry
u
n
it
s]

0 0.5 1
0

0.5

1

x

d
�

d
x

[a
rb

it
ra

ry
u
n
it
s]
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Calculating the cross section

◦ Finally, the total cross section is given by

σ =

∫1
−1

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]
2|⃗k∗||⃗k′∗|4x dx

σMC =
1

N

N∑
i

M2G2
F cos θC

8πE2
ν

[
A(q2)∓ B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]
2|⃗k∗||⃗k′∗|4x

◦ In conclusion: do some kinematics, add some boosts between CMS and LAB, change the
integration variable several times... and you are ready to calculate the cross section

→ Now, we need to generate some events that are distributed according to the cross section
formula
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Generating events

◦ Take a random x from [0; 1]

◦ Do the kinematics

x → cos θ∗

cos θ∗ → k′∗, p′∗

k′∗, p′∗ → k′, p′

...

◦ Calculate the cross section

◦ Accept an event with the probability P(x) = σ(x)
σmax

Generating events
• Take x 2 [0, 1]

• Do the kinematics

x ! cos ✓

cos ✓ ! k
0⇤, p

0⇤

k
0⇤, p

0⇤ ! k
0, p

0

...

• Calculate the cross section

• Accept and event with the
probability of

P =
�

�max

Generating events

Monte Carlo method

Quasi-elastic scattering
QEL on free N
Generating kinematics
LAB � CMS
Cross section
Generating events
A few more steps

Tutorial MC

MC generators

�N interactions

�A interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 39 / 96

� Generate x 2 [0 : 1]

� Do kinematics

x ! cos ✓

cos ✓ ! k0�, p0�

k0�, p0� ! k0, p0

...

� Calculate cross section �

0 0.5 1
0

�max

x

d
�

d
x

[a
rb

it
ra

ry
u
n
it
s]

� Accept an event with the probability given by

P =
�

�max

� And you almost have you MC neutrino-event generator, just a
few more steps...
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Are we there yet?
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A few more steps...

→ add other dynamics: single-pion production, deep inelastic scattering...

→ add support for nuclei as targets

→ if you have a nucleus, add some two-body current interactions

→ if you have a nucleus, add some nuclear effects: Pauli blocking, final-state interactions...

→ add support for neutrino beams

→ add support for detector geometries

→ add some reweighting

... and your MC generator is done!
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Ingredients
What is the main problem?

• In perfect world MC
generators would
contain “pure”
theoretical models

• In real world theory
does not cover
everything

• Neutrino and
non-neutrino data
are used to tune
generators

How to build generator

Tomasz Golan MC generators @ NuSTEC 52 / 96

INGREDIENTS:

theorytheory � data� data other dataother data

educated guesseseducated guesses

Phase space

RECIPE:
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Recipe

How to build generator

Tomasz Golan MC generators @ NuSTEC 52 / 96

INGREDIENTS:

theorytheory ν dataν data other dataother data

educated guesseseducated guesses

Phase space

RECIPE:
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Initial state Interaction channel FSI

quantum mechanical

semi-classical

Other interactions

SF
hole
spectral
function

MDP
momentum
dependent
potential

FG global
fermi gas

LFG local
fermi gas

Bodek-Ritchie
fermi gas

EL

CC

NC

QE
quasi
elastic
scattering

RES
resonant
pion
production

DIS
deep
inelastic
scattering

MEC
meson
exchange
current

HYP hyperon
production

RPA

COH
coherent
pion
production

LEP
with
atomic
electrons

hadron
scattering

Cascade

energy transfer
modification
in the SF model

N
uW

ro
M
on

te
C
ar
lo

ev
en

tg
en

er
at
or
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Supplementary material
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MC integration (hit-or-miss method)
Let’s consider the following integral

∫ 1

0
f (x)dx =

∫ 1

0

(
1
2

x
)

dx =
1
2

x2

2

∣∣∣∣
1

0
=

1
4

→ take a random point from
a [0, 1]× [0, 1] square

→ compare it to your f (x)

→ repeat N times

→ count n points below the
function

→ your result is given by

∫ 1

0
f (x)dx = A� ·

n
N

MC integration (hit-or-miss method)

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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Lets do the following integration using MC method:

∫ 1

0

f(x)dx =

∫ 1

0

(
1

2
x

)
dx =

1

2

x2

2

∣∣∣∣
1

0

=
1

4

■ take a random point from
the [0, 1] × [0, 1] square

■ compare it to your f(x)

■ repeat N times

■ count n points below the
function

■ you results is given by

∫ 1

0

f(x)dx = P! · n

N
=

n

N

y

x

f(x) = 1
2x

1

1
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OptimizationsOptimization of MC

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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y

x

f(x) = 1
2x

1

1

y

x

f(x) = 1
2x

0.5

1

■ You want to avoid generating “red” points as they do not
contribute to your integral

■ You can choose any rectangle as far as it contains maximum of
f(x) in given range

• We want to avoid generating “red” points as they do not contribute to
your integral

• Any rectangle can be chosen as far as it contains maximum of f (x)
in given range
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Optimizations

• Consider the following
function

F (Q2) =
1

(1 + Q2)2

• Integrating this function over
Q2 is highly inefficient

• One can integrate by
substitution to get better
performance, e.g.

x = log10 Q2

→ don’t forget about the
Jacobian!

Optimization of MC

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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■ Lets consider the following
function:

F (Q2) =
1

(1 + Q2)2

more or less dipole form
factor

■ Integrating this function
over Q2 is highly inefficient

■ However, one can integrate
by substitution to get
better performance, e.g.

x = log10(Q
2)

don’t forget about Jacobian

2 4 6 8 10
0

0.1

0.2

Q2

F
(Q

2
)

−2 −1 0 1
0

0.5

1

x = log10(Q
2)

F
(x

)
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MC integration (crude method)

Let’s consider the following integral again

∫ 1

0
f (x)dx =

∫ 1

0

(
1
2

x
)

dx =
1
2

x2

2

∣∣∣∣
1

0
=

1
4

• One can approximate the
integral

∫ b

a
f (x)dx =

b − a
N

N∑

i

f (xi)

where xi is a random number
from [a, b]

• It can be shown that this method
is more accurate

MC integration (crude method)

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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Lets do the following integration using MC method once again:

∫ 1

0

f(x)dx =

∫ 1

0

(
1

2
x

)
dx =

1

2

x2

2

∣∣∣∣
1

0

=
1

4

■ One can approximate
integral

∫ b

a

f(x)dx ≈ b − a

N

N∑

i=1

f(xi)

where xi is a random
number from [a, b]

■ It can be shown that crude
method is more accurate
than hit-or-miss

■ We will skip the math and
look at some comparisons

y

x

f(x) = 1
2x
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Random numbers from probability density functions

• How to generate a random
number from probability density
function?

• Let’s consider f (x) = 3x2

• Which means that x = 1 should
be thrown 2 times more often
than x =

√
2

2

Random numbers from probability density function

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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■ How to generate a random
number from probability
density function?

■ Lets consider f(x) = 3x2

■ Which means that x = 1
should be thrown 2 times
more often than x =

√
2

2

0 0.5 1
0

1

2

3

x

y
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Cumulative distribution function

• Cumulative distribution function of a random variable X :

F (x) = P(X ≤ x)

• Discrete random variable X :

F (x) =
∑

xi≤x

f (xi)

where f is a probability mass function (PMF)

• Continuous random variable X :

F (x) =

∫ x

−∞
f (t)dt

where f is a probability density function (PDF)
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Cumulative distribution function - discrete example

• Probability mass function f (x) = 3x2

with discrete random variables X is {
√

1
30 ,
√

2
30 ,
√

3
30 ,
√

4
30}

• CDF is given by

F (x) =





1
10 if x ≤

√
1

30

3
10 if x ≤

√
2

30

6
10 if x ≤

√
3

30

10
10 if x ≤

√
4

30

Cumulative distribution function - discrete example

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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■ Probability mass function f(x) = 3x2

with discrete random variables X is {
√

1
30 ,

√
2
30 ,

√
3
30 ,

√
4
30 , }

■ CDF is given by:

F (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
10 if x ≤

√
1
30

3
10 if x ≤

√
2
30

6
10 if x ≤

√
3
30

10
10 if x ≤

√
4
30

0 0.2 0.4
0

0.5

1

x

F
(x

)

■ With P = 1 the random number is less or equal to
√

4
30 , with

P = 0.6 the random number is less or equal
√

3
30 ...

→ generate a random number u from [0, 1]

→ if u ≤ 0.1: x =
√

1
30 → else if u ≤ 0.3: x =

√
2
30 ...
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Cumulative distribution function - continuous example

• Probability density function f (x) = 3x2

with continuous random variables X range [0, 1]

• CDF is given by

F (x) =

∫ x

0
f (t)dt = x3

→ generate a random number u
from [0, 1]

→ find x for which F (x) = u,
i.e. x = F−1(u)

Cumulative distribution function - continuous example

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 21 / 96

■ Probability density function f(x) = 3x2

with continuous random variables X range [0, 1]

■ CDF is given by:

F (x) =

x∫

0

f(t)dt

=

x∫

0

3t2dt

= t3
∣∣x
0

= x3 0 0.5 1
0

0.5

1

x

F
(x

)

■ Blue area gives the probability that x ≤ 0.75

• Unfortunately, usually F−1 is unknown, which makes this method
pretty useless (at least directly)
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Acceptance-rejection method

• Let’s consider a function f (x) = A · x3 · e−x2
with x ∈ [0, 1],A = 2e

e−2

• CDF is given by F (x) = N
2 (x2 − 1)e−x2

and we don’t know F−1!

→ find a suitable fmax ≥ max(f )

→ take a random x

→ generate a random u from [0, fmax]

→ accept if u ≤ f (x) (P = f (x)
fmax

)

Acceptance-rejection method

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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■ Evaluate fmax ≥ max(f)

Note: fmax > max(f) will
affect performance, but the
result will be still correct

■ Generate random x

■ Accept x with P = f(x)
fmax

◆ generate a random u
from [0, fmax]

◆ accept if u < f(x)

■ The plot on the right shows
the results for N = 105

0 0.5 1
0

0.2

0.4

0.6
fmax

x

y

0 0.5 1
0

0.2

0.4

x

n
/A

/
su

m
/w

id
th

• The same procedure as the integration via hit-or-miss but focusing on
accepted points, not the integral itself
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Acceptance-rejection method - optimization

• The area under the plot of f (x) is
∼ 0.13, while the total area is 0.4

• We can try to limit the number of
wasted points taking a better
envelope

• For g(x) = 0.4x the total area is
0.2, so we speed up twice

→ The culumative distribution is
G(x) = x2,G−1(x) =

√
x

→ Generate a random u ∈ [0, 1]

→ Calculate x = G−1(u) and accept
with probability P = f (x)/g(x)

Acceptance-rejection method - optimization

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators

Tomasz Golan MC generators @ NuSTEC 25 / 96

■ The area under the plot of
f(x) is ∼ 0.13

■ The total area is 0.4

■ Thus, only about 30% of
points gives contribution to
the final distribution

■ One can find g(x) for
which CDF method is
possible and which
encapsulates f(x) in given
range and generate x
according to g(x)

■ For g(x) = 0.4x the total
area is 0.2, so we speed up
twice

0 0.5 1
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0.2

0.4

x

y

0 0.5 1
0

0.2

0.4

x

y
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Importance sampling

• Sampling more significant parts of
phase space more often

∫ 1

0
f (x)dx

→
∫ 1

0

f (x)

g(x)
[g(x)dx ]

• Mathematically speaking all three
methods are equivalent

Acceptance-rejection method - optimization

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tutorial MC

MC generators

νN interactions

νA interactions

Final state interactions

Formation time

Summary

Tutorial generators
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■ The area under the plot of
f(x) is ∼ 0.13

■ The total area is 0.4

■ Thus, only about 30% of
points gives contribution to
the final distribution

■ One can find g(x) for
which CDF method is
possible and which
encapsulates f(x) in given
range and generate x
according to g(x)

■ For g(x) = 0.4x the total
area is 0.2, so we speed up
twice
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