How generators work ...and why it’s wrong*
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Basic aspects of the methodology
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From Solitaire to the Monte Carlo method

At Los Alamos, Stanistaw Ulam, John von Neumann, Nicholas Metropolis and others invented a
method to obtain stochastic predictions for systems too complex to be solved analytically.

— We can build a complex model using b
simple components

— Every required decision is made
stochastically (randomly)

— We run such a model N times and
analyze the output

— For N — oo we approach the correct
result for the model

Electronic Numerical Integrator and Computer (ENIAC)
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Monte Carlo integration (hit-or-miss method)

Let’s consider the following integral
1 1 1 1 x2
L f(x) dx = Jo (§X> dx = 75

— Take a random point from [0; 1] x [0; 1]

— Compare it to your f(x)
— Repeat N times

— Count n points below the function

— The result is given by f; f(x) dx = Agy H : >
1 x
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Monte Carlo integration (crude method)

Let’s consider the following integral (again)

1 T 71 1 x2
J;) f(X) dx = JO (zX) dx = z?

— One can approximate the integral by

N
Jb (x) dx = > )

where x; is a random number from [a; b]

— This method leads to slightly higher precision

April 13th 2024 8/39
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Accept-or-reject algorithm

Let’s generate a set of points that follows the probability distribution given by our function

f(x) = %x
Y
— Find a suitable f,,x > max(f)
1 ,,,,,,,,,,,
— Take a random x from [0; 1] = %:C
— Generate a random u from [0, fpax]
— Accept the point x if u < f(x) (P = ];1(:))

x
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Optimization

— We wish to increase the efficiency of our calculation by avoiding loosing the "red" points

— We can choose any envelope to our function as long as it contains the maximum of f(x)
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Importance sampling

Let’s consider a different function
fix) =Ax3 e ™

withxin [0;1] and A = ezfz

o The area under f(x) is ~ 0.13, while the total is 0.4

o Having a good x-dep. envelope increases efficiency

— For, e.g., g(x) = 0.4x, the total area is 0.2 >

— We can accept points using a probability
P(x) = f(x)/g(x)
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Importance sampling

Let’s consider a different function

f(x) =Ax> e’

withxin [0;1] and A = ezfz

o Alternatively, we could change our random numbers
from non-uniform distributions

o We can pick more points where the function is larger

— We can sample points from g(x) = 0.4x, and correct
the probability

J] f(x)dx — r M [g(x)dx]
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Problems to consider

o

How to generate random numbers from a uniform distribution?

[¢]

What does it mean for a random number generator to be good?

[¢]

How to generate numbers from discrete random variables?

@]

How to generate numbers from continuous random variables?

o]

How to generate numbers from arbitrary distributions?
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Distribution of selected numbers: "Choose an integer number between 1 and 100"

Temperature

[e 1
L
I

Al Research
by Leniolabs_

=
o
Probability

B
'S

37 42 4750 57 73 100
Number selected by GPT

Source: ChatGPT prompted 1000 times with
“Choose an integer number between 1 and 100"

NulINT School 2024 April 13th 2024 14 /39



Example I: Nucleon propagation
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Classical particle propagating through a medium

Probability for a particle to propagate over a distance x with no interactions is

P(x) = %exp(—x/)\)

where A = (po)~! is the mean free path, while p is target density and o is interaction cross section

We can try to apply it to nucleons in nuclei because:
A<d<A<R

where A is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius

N. Metropolis et al., Phys.Rev. 188 (1958) 185, Phys.Rev. 188 (1958) 204
~ KajetanNiewczas NuINT School 2024 April 13th 2024 16 / 39



Application to nuclei (space-like approach)
o Pick a random starting point in the nucleus
o Propagate the nucleon in discrete steps, e.g., Ax = 0.2 fm
o At every step, we sample x from P(x) = AT exp(—x/A)

— If x < Ax, then the nucleon-nucleon interaction happens

o The probability that the nucleon leaves the nucleus with
no re-interactions is called transparency

— Our procedure solves an integral

2R
T= J fr(z)e #* dz
0

where fg(z) is the distribution of the starting points
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Nuclear transparency

o For fixed density (uniform ball), the solution is given analytically

1 1
_ —A
T =3e <ﬁ+ﬁ>+3<

where A = 2R/A = 2Rpo

1

1
ﬁ—ﬁ)

— e.g., forp=0.16 fm 3, 0 =40 mb, and R = 6 fm, we get T ~0.189
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Intranuclear cascade

— implement realistic density
profiles and cross sections

— add the kinematics of each
interaction

— respect Pauli blocking

— make sure that scattered particles
also propagate

— introduce branching ratios of
different channels

— track also other hadrons

— add other nuclear effects...

NulINT School 2024
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Scattering
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Pion Production
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Lepton-nucleus scattering
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General remarks

o Leptons are Standard Model particles

— there are better ways to model their interactions than billiard balls

o Lepton-nucleon cross section is lower than nucleon-nucleon
— we do not shoot at nuclei, we start from the primary interaction

— we need an external lepton-nucleus cross section model

o Lepton-nucleus interactions require great precision

— common detector simulation software do not contain these processes
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Independent variables

Unknown particle 4-vectors ‘ Variables Physical effects ‘ Variables

Initial lepton 4 Particles on-shell —(3+N)
Target nucleus 4 4-momentum conservation —4
Final lepton 4 Target rest-frame -3
Remnant nucleus 4 Fixed projectile direction -2
Outgoing hadrons 4N Fixed incoming energy -1

16 +4N —13—N

3+3N

Table 1.2: Counting the number of independent variables describing lepton-nucleus interactions while
detecting N hadronic particles in the process, summing over the spin of the outgoing lepton, and leaving

the remnant nucleus undetected.

NulINT School 2024
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Cross sections

Target Process Properties Example formula
(Quasi)elastic | N = 0, all particles on-shell dd(gz
Free nucleon Inelastic N = 0, excited hadronic system de§§W
SPP N =1, all particles on-shell szf}:,(fdQﬂ
Inclusive N = 0, all hadrons integrated jzf/
1plh N =1, detected one nucleon ﬁ%gw
Nucleus s
2p2h N = 2, detected two nucleons Wg‘fw
SPP N = 2, detected nucleon and 7 d

o
dEdO'dEdO,-dO

Table 1.3: The dimensionality of cross section formulas for the most basic lepton scattering scenarios, off
the free nucleon or on the nucleus.
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Example II: Quasielastic neutrino-nucleon scattering
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Quasielastic scattering on a free nucleon

Llewellyn-Smith formula

do (‘VL‘FTL—)].—FP) :m A( Z)ZFB( 2)(s—u) C(ql)w

dq? \Wi+p o1 +4n 8rE2 q e M2

Notation

o constants: M - nucleon mass, G - Fermi constant, 6 ¢ - Cabbibo angle

o g% =(k—K)? = (p’ —p)? - four-momentum squared,
where k, K/, p, p’ are four-momenta of initial and final lepton, initial and final nucleon

o Ey -neutrino energy

o s =(k+k)?and u = (k—p’)? - Mandelstam variables

o —— LT sl 2120 el B



Quasielastic scattering on a free nucleon

Llewellyn-Smith formula

do (vi+n—1 +p\ M?GfcosOc
dlg?| \m+p—=1"+n)  8nE2

(s —u)?
M4

+C(q?)

General idea

o having k and p, generate k' and p’

o

calculate q2 and (s — u) = 4ME,, + q> — m? based on the generated kinematics

calculate the cross section

[¢]

o

repeat N times and the result is given by

N
1
Ototal ™~ N E G(qf)
i
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Generating kinematics

—

LAB

.Pu

—

PN

~

o Let’s consider kinematics in the center-of-mass system

o Mandelstam s is invariant under Lorentz transformation

s=(k+p)?=(E+Ep)? = (K+p)? = (E" +E})?

o /s is the total energy in CMS

o We will use it to calculate p*

VS=E +E; =pZ+m2+/p2+M2

NulINT School 2024

April 13th 2024
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Generating kinematics
o After some simple algebra
VS =E"+E; =pZ+m2+/p2+M2
Vs =E"+VE*2 —m2+ M2
s=E? +E% —m? + M? + 2E°E;,
s =2E*(E* + E5) —m? + M?
s =2E*y/s —m? + M?

and E*:s—kmz—l\/l2
2/s

£ s+ MZ—m?
p 25

o We use this result to get

[s — (m—M)?[s — (m+M)?]
* = 4/ *2 2 —
P t m 2V2

o —— LT sl 2120 e i Zi)
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Generating events

o We use spherical coordinate system to determine
momentum direction in CMS

=%

P

p* - (sin O cos ¢, sin O sin ¢, cos )

o Generating random angles

¢* = 21t - random|[0; 1] — sin¢*,cosp*
cos0* =2 -random[0;1] —1 — sin¢*, cosd”

o Now, we need to come back to the LAB frame
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Boosting between frames

[¢]

o In our case

[¢]

t/
T_/

,Y
,I—,.'

(t—
+

Lorentz boost in the direction i = % of (t,7)

Boost from LAB to CMS in the V direction

o Boost from CMS to LAB in the —V direction

NulINT School 2024

CMS
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Calculating the cross section

Llewellyn-Smith formula

do (vi+n—=1 +p _MZG]Z:COSGC
dig?l \Wi+p—=>1"+n/  8nE2

Calculation

o once we have p’, k’ in the LAB frame, we can calculate qZ ans (s —u)
o once we have q?, we can calculate A(q?), B(q?), and C(q?)

o we have all we need to calculate the final result

— but we changed variables so we need a Jacobian!
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Calculating the cross section

o Express g2 in terms of the lepton angle (in CMS)

g% = (k—K)? = (kK* —K*)? =m? — 2k* - k* = m? = 2EE’ + 2[K*|[K"*| cos 0*

o Thus, the Jacobian is given by
dq? = 2/k*||[k"*| d cos 0*

o The total cross section is given by

(s —u) (s —w)?
M2 4

+C(q?)

r M2GZ cosO¢
—1

e [Ala?) 7 B(a?)

] 2[K*(|K"™*| d cos 6*

M?2G2 cos 0 s—u s—uw)?] .o -
NZ e At 7 Bl S et S 2
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Calculating the cross section

=
5 14
o We want to avoid any sharp peaks as they affect our f:?
efficiency and accuracy S 05l
(8]
2
o Let’s change the variable once again = 071 05 0 015 1
cos0* =1—2x?, x € [0;1] cos
)
g 1
o Notice, the new Jacobian and integration limits >
(o
1 0 1 5 057
ZJ dcos0* — J dx (—4x) — J 4x dx 5,
—1 1 0 o
SIS] O }
0 0.5 1
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Calculating the cross section

o Finally, the total cross section is given by

(s —u)
MZ

' M2GZcos6c 5, (s—uw)?

[A(qz) +B(q?) ] 2[R dx

2

232 _ _
oMC = Z MGy cos@c [A(qz) ¥B(q2)(s u) +C(q2)(s M:L)

87TE2 VP ] 20Kk 4x

o In conclusion: do some kinematics, add some boosts between CMS and LAB, change the
integration variable several times... and you are ready to calculate the cross section

— Now, we need to generate some events that are distributed according to the cross section
formula
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Generating events

o

Take a random x from [0; 1]

o Do the kinematics g
=

x — cos0* >
cos0* — K* p™ s
k/*,p/* - kl)pl _e

0,

S

0 -
o Calculate the cross section 0 0.5 1

o(x)

[¢]

Accept an event with the probability P(x) =

O'max
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Are we there yet?
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A few more steps...
— add other dynamics: single-pion production, deep inelastic scattering...
— add support for nuclei as targets
— if you have a nucleus, add some two-body current interactions
— if you have a nucleus, add some nuclear effects: Pauli blocking, final-state interactions...
— add support for neutrino beams
— add support for detector geometries
— add some reweighting

. and your MC generator is done!

o —— LT sl 2120 el E D



Ingredients

Phase space

educated guesses
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Supplementary material
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MC integration (hit-or-miss method)

Let’s consider the following integral

1 e 1x2
/0 f(x)dx_/0 <§x> dX_é?

— take a random point from
a[0,1] x [0, 1] square

— compare it to your f(x)
— repeat N times

— count n points below the
function

— your result is given by

1
/ f(x)dx = Ao -

0
C KeptnNiewaas NuINT School 2024 April 13th 2004 a7
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Optimizations

Y Y

* We want to avoid generating “red” points as they do not contribute to
your integral

¢ Any rectangle can be chosen as far as it contains maximum of f(x)
in given range
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Optimizations

e Consider the following

function
F@) =
(1+Q?)?
® |ntegrating this function over 2 4 6 8 10
@7 is highly inefficient Q?

® One can integrate by
substitution to get better
performance, e.g. S

X = |Og10 02

— don’t forget about the
Jacobian!
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MC integration (crude method)

Let’s consider the following integral again

! Ve 1x2
/0 f(x)dx:/0 (2x> dXZE?

¢ One can approximate the Yy
integral

/a f(x)dx

where x; is a random number
from [a, b]

® |t can be shown that this method
is more accurate
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Random numbers from probability density functions

* How to generate a random

number from probability density

function?

e |Let’s consider f(x) = 3x2

e Which means that x = 1 should
be thrown 2 times more often

than x = ‘/75

NulINT School 2024
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Cumulative distribution function

e Cumulative distribution function of a random variable X:
F(x) = P(X < x)
e Discrete random variable X:

F(x)=_ f(x)

X <x
where f is a probability mass function (PMF)

e Continuous random variable X:

F(x) = / " Hat

—00

where f is a probability density function (PDF)
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Cumulative distribution function - discrete example

® Probability mass function f(x) = 3x2

with discrete random variables X is {1/ 55,1/ 2. \/ 55 \/ 35}

e CDF is given by

1 —o
1 1
0 XS4/ —~ .
3 ifx</& & 05
F(X): 10 - 30
6 3 —e
10 if x < /35
B ifx< /55 0 %
0 0.2 0.4

— generate a random number u from [0, 1]

— ifu<0l:x=4/4 —elseifu<03:x=,/5..
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Cumulative distribution function - continuous example

® Probability density function f(x) = 3x2
with continuous random variables X range [0, 1]

e CDF is given by

X 1 4
F(x) = / f(t)dt = x*
0
=

— generate a random number u & 05

from [0, 1]
— find x for which F(x) = u, 0 , #

i.e. x =F'(u) 0 0.5 1

e Unfortunately, usually F~' is unknown, which makes this method
pretty useless (at least directly)
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Acceptance-rejection method

e Let's consider a function f(x) = A- x3 - e with x € [0,1], A= 2e

® CDFis given by F(x) = g(x —1)e~** and we don't know F~ !

an axr

— find a suitable fax > max(f) 0.6 1
— take a random x = 0.4 1

— generate a random u from [0, fiax] 0.2 1

— acceptif u < f(x) (P = M) 0

frax

® The same procedure as the integration via hit-or-miss but focusing on
accepted points, not the integral itself
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Acceptance-rejection method - optimization

® The area under the plot of f(x) is
~ 0.13, while the total area is 0.4

e We can try to limit the number of
wasted points taking a better

envelope

® For g(x) = 0.4x the total area is

0.2, so we speed up twice

— The culumative distribution is

G(x) = x2,G7'(x) = Vx

— Generate a random u € [0, 1]

— Calculate x = G~'(u) and accept
with probability P = f(x)/g(x)

NulINT School 2024

0.4 1

April 13th 2024

50/ 39



Importance sampling

¢ Sampling more significant parts of
phase space more often

/01 f(x)dx

' f(x)
= /0 S lai

® Mathematically speaking all three
methods are equivalent

NulINT School 2024
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