Nitrogen removal from liquid argon using Li-FAU, an innovative Brazilian method

Flor de Maria Blaszczyk⁵, Sergey Koshelev⁵, Alan Hahn⁵, <u>Daniel Correia</u>⁴, Dilson Cardoso², Renato Soccol Junior³, Pedro Bianchi Neto³, Roza Doubnik⁵, Mark Adamowski⁵, David Montanari⁵, Thiago P. M. Alegre, Ana Amélia Machado¹, Ettore Segreto¹, José Mansur Assaf², H. da Motta⁴, Dirceu Noriler³ and P. G. Pagliuso¹.

¹Instituto de Física "Gleb Wataghin", UNICAMP, Campinas-SP, 13083-859, Brazil, ²Advanced Materials and Energy Research Center, Federal University of São Carlos, São Carlos, Brazil, ³School of Chemical Engineering, UNICAMP, Campinas-SP, Brazil, ⁴Brazilian Center for Research in Physics, Rio de Janeiro-RJ, Brazil, ⁵Fermi National Accelerator Laboratory, Batavia, Illinois, USA.

Background

Liquid argon (LAr) is at the core of Time Projection Chamber used in neutrino experiments. Nitrogen (N_2) , oxygen and water are the main contaminants in LAr that compromise the quality of physics a LArTPC can deliver. It is crucial to keep them as low as possible.

- N₂ absorbs the LAr scintillation light, restricting the full collection of the light available [1];
- There is no N_2 adsorbent being used in LAr detectors up to date;
- Li⁺ Faujasite (Li-FAU) is an innovative method proposed to remove N_2 from LAr, whose initial tests were performed in the Liquid Argon Purification Cryostat (PuLArC, IFGW/Unicamp) [1,2].

Analysis

• Analysis: mean and standard deviation of the mean computed for 10-secs measurements at each 3 hour of purification.

Figure 3: N_2 concentration (ppm) for 4 days of purification through Li-FAU.

Results

Figure 1: Li-FAU structure. Extracted from [3].

The adsortion mechanism is due to the interaction of N_2 with the lithium cations present in Li-FAU.

- The method was tested in the ICEBERG cryostat at the Noble Liquid Test Facility (NLTF, Fermilab);
- The tests in ICEBERG confirm previous results from PuLArC, where Li-FAU removed N₂ from LAr down below to sub-ppm.

Experimental Setup

The experimental setup used to explore Li-FAU in the ICEBERG is described below. Fig. 2 illustrates the ICEBERG cryostat.

- 2,625 liters of commercial LAr;
- 3 kg of Li-FAU media;
- 1 gas analyzer: LDetek;
- 70 liters of gas Nitrogen.

Several controlled amounts of N_2 were flushed into ICEBERG (15-25 L each).

Tab. 1 contains the mean values of the initial and final N_2 concentrations.

Table 1: Initial and final N_2 concentrations (ppm).

Tests	t=0 h	t=96 h
Run1	5.68 ± 0.10	0.84 ± 0.04
Run2	4.84 ± 0.07	0.71 ± 0.03
Run3	7.54 ± 0.14	2.50 ± 0.07

Fig. 4 shows the evolution of N_2 concentration (ppm) vs. purification time (h).

Figure 4: N_2 concentration as function of purification time.

Conclusions

An innovative method to remove N_2 from LAr, Li-FAU, was tested in ICEBERG at NLTF (Fermilab). The experiment shows that Li-FAU is able to reduce the concentration of N_2 injected multiple times into 2,625 L of LAr down to subppm in cycles of 96 hours. The tests confirm the preliminary results obtained in PuLArC at IFGW/Unicamp.

Figure 2: ICEBERG Cryostat at Fermilab.

Acknowledgments

This work was supported by FAPESP, project 2020/01609-2, and CAPES.

References

[1] Technical Note CRYOFRABR010/2023, Innovative Proposal for N₂
Capturing in Liquid Argon Using the Li-FAU Molecular Sieve;
[2] D. Cardoso et al., Innovative proposal for N₂ capturing in Liquid

Argon using the Li-FAU molecular Sieve, submitted to JINST;

[3] Technical Note CRYOFRABR003/2021, Determination of nitrogen physisorption properties by zeolites for argon purification.

