

Searches for BSM interactions with top quarks with additional final-state leptons EFT interpretations

arXiv:2307.15761

Brent R. Yates The Ohio State University On behalf of the CMS Collaboration <u>brent.vates@cern.ch</u> CMS EFT workshop at the LPC, September 5th

27%

68%

SM 5%

Motivation for new physics

The standard model of particle physics (SM) is a very precise theory, but only accounts for 5% of the energy content of the universe

The LHC has been running for 10 years with no clear signs of new physics

What if $\Lambda_{\text{New physics}} > \Lambda_{\text{LHC}}$?

Ordinary Matter

Dark Matter

Dark Energy

Introduction to SM effective field theory (SMEFT)

New physics at scales beyond what the LHC can directly probe can be approximated by expanding terms of higher dimensional (d) operators O consisting of SM fields

Operators are suppressed by powers of the energy scale Λ , and the strength is controlled by the Wilson coefficients (WCs) c_i

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d,i} \frac{c_i^{(\alpha)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Odd dimensions violate lepton and baryon numbers

Focusing on dimension-6

dim-8+ suppressed by additional powers of Λ

Analysis overview

Dimension-six is the lowest order **non-LFV** SMEFT term

Global fit for 26 dimension-six WCs using data collected in 2016-2018 (138 $\rm fb^{-1})$

Probe EFT effects in multilepton final states

Fitting kinematic variables (178 bins)

- $p_{\rm T}$ of Z-boson for most 3ℓ on-shell Z production ($p_{\rm T}({\rm Z})$)
- $p_{\rm T}$ of the leading pair of leptons and/or jets ($p_{\rm T}(\ell j)_{\rm max}$)

No assumptions made to the underlying correlations

Production modes: $t\bar{t}l\nu$, $t\bar{t}ll$, tllq, $t\bar{t}H$, tHq, and $t\bar{t}t\bar{t}$

tttt

ItHa

tīH

💹 Total unc. 🔶 Data

Charge misid. Misid. leptons Diboson Triboson Conv. KWZ

tlla

tīlī

tīlv

Model operators

EFT parametrization

Matrix element is a function of WCs

$$\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \sum_{j} \frac{c_j}{\Lambda^2} \mathcal{M}_j$$

Events are weighted depending on simulated cross section ($\propto M^2$)

$$w_{i}\left(\frac{\vec{c}}{\Lambda^{2}}\right) = s_{0i} + \sum_{j} s_{1ij} \frac{c_{j}}{\Lambda^{2}} + \sum_{j} s_{2ij} \frac{c_{j}^{2}}{\Lambda^{4}} + \sum_{j \neq k} s_{3ijk} \frac{c_{j}}{\Lambda^{2}} \frac{c_{k}}{\Lambda^{2}}$$

SM term
SM interference term
SM interference term
EFT interference term

Parametrizing analysis bins

Unique challenges overcome

Simulation samples generated at non-SM point to cover more complete phase space

Computationally intensive framework – 210 NPs, \sim 2.7M templates Goal of <u>10-minute</u> histogram time in sight

THE OHIO STATE UNIVERSITY

9

Misidentified lepton background

Lepton production

Probability of a non-prompt lepton passing prompt cuts is measured in a multijet enriched region

Data-driven

Fitting procedure

Each bin is treated as a Poisson experiment with a probability of obtaining the observed data

Profiled likelihood simultaneously fits all bins; extract the 95% confidence intervals of the various WCs

Two fitting procedures are used:

Scan single WC, other 25 are unconstrained nuisance parameters

• More physical of the two, no reason for new physics to only favor one WC

Scan a single WC, other 25 are fixed to their SM value of zero

 Extreme scenario where nature has a single WC; lack of correlations → single WC must account for all discrepancies between data and simulation

Initial expected yields

Kinematic variables integrated out

Fitted expected yields

Kinematic variables integrated out

Visualizing likelihood: single WC scan

Scanning c_{QQ}^1 while the other 25 are **profiled** or **fixed to the SM** value of zero

Visualizing likelihood: two-dimensional WC scans

Pairs of WCs are also scanned to help investigate the correlations between WCs, as visualizing the full 26-dimensional hypersurface in not feasible

Important/unique systematic uncertainties

Monte Carlo simulation modeling

- Scale uncertainties QCD and PDF cross section uncertainties (normalization) –
- **Diboson jet multiplicity** Diboson jet rate scale derived from control regions

Analysis specific

- Misidentified lepton rate estimate Contamination from non-prompt leptons
 Overcome by examining the analysis side-bands
 Data-driven → statistically limited
- **Missing parton** LO to NLO corrections for single-t samples

Unique to analysis

Important in limits

Results

Extracted 68 and 95% CIs

Some WCs have double minima due to quadratic parametrization

Use 95% CIs to extract energy scale Λ

Results

Extracted 68 and 95% CIs

Some WCs have double minima due to quadratic parametrization

Use 95% CIs to extract energy scale Λ

- Range at which we can probe new physics
- E.g., if nature set $c_{\rm tZ} = 1$ we would measure $\Lambda \approx 1$ TeV

Summary

EFT in t quark + additional lepton final states

- Run 2 data (138 fb⁻¹)
- Kinematic distributions $-p_{\rm T}(lj)_{\rm max}$ and $p_{\rm T}({\rm Z})$
- 95% confidence intervals extracted for 26 WCs

Very technical analysis with many moving parts

Statistical inference computationally intensive

All WCs consistent with SM

The Ohio State University

Backup

CMS EFT workshop at the LPC

Dim6TopEFT Model

EFT simulations are generated by MADGRAPH_AMC@NLO using the dim6TopEFT[1] model

- Warsaw basis of dimension six operators
- $\Lambda = 1 \text{ TeV}$
- CKM matrix is assumed to be a unit matrix
- u, d, s, c, e, µ masses all set to zero
- The unitary gauge is used and Goldstone bosons are removed
- Baryon and lepton number violating operators are not included
- Only tree-level simulation is possible