

EFT in Multiboson physics at CMS

Irene Zoi

CMS EFT workshop at the LPC, September 2023

The SM (and beyond?) physics processes

Triboson

Diboson

Vector Boson Scattering

Contact interactions

The EFT framework

▶ Parametrize deviations from the SM in terms of an Effective Field Theory (EFT)

Beyond the LHC direct reach!

In the past: Diboson for dim6 & VBS for dim8

Fermilab

Vector

Boson

Scattering

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-08 23:47:39.259242 GMT Run / Event / LS: 276525 / 2665335317 / 1561

VBS jet

4 09/05/2023 Irene Zoi (<u>irene.zoi@cern.ch</u>) I EFT in Multiboson physics at CMS

Vector Boson Scattering

- Three contributions at LO:
 - **1. Pure EWK O(** α_{EW}^6 **)** \rightarrow signal
 - 2. QCD-induced $O(\alpha_{EW}^4 \alpha_S^2)$ irreducible contribution
 - 3. EWK-QCD interference $O(\alpha_{EW}^5 \alpha_S)$

Vector Boson Scattering

- Three contributions at LO:
 - 1. Pure EWK $O(\alpha_{EW^6}) \rightarrow signal$
 - 2. **QCD-induced** $O(\alpha_{EW}^4 \alpha_S^2)$ irreducible contribution
 - 3. EWK-QCD interference $O(\alpha_{EW}^5 \alpha_S)$

Fermilab

7

Main backgrounds: ttbar/top, DY, non-prompt leptons, diboson

Fermilab

why VBS processes?

- Probes two key aspects of the SM together
 - Gauge interactions: triple and quartic gauge couplings
 - Couplings between the Higgs and the gauge bosons
 - complementary to direct measurements

VBS Run2 results:

First evidence and observations for rare processes

	PROCESS	LUMI [fb-1]	RESULTS	REFERENCE
Eully	VBS in ssWW + WZ	Full Run 2 (137/fb)	Observation & XS + dim-8 EFT limits	PLB 809 (2020) 135710
	polarized VBS ssWW	Full Run 2 (137/fb)	W_LW_L measurement	PLB 812 (2020) 136018
leptonic	VBS ZZ	Full Run 2 (137/fb)	Evidence + dim-8	PLB 812 (2021) 135992
	VBS osWW	Full Run 2 (137/fb)	Observation & XS	<u>arXiv:2205.05711,</u> sub. PLB
Semi- 🖌	VBS WV	Full Run 2 (137/fb)	Evidence	PLB 834 (2022) 137438
leptonic	VBS WV/ZV	2016 data (36/fb)	Dim-8 EFT limits	PLB 798 (2019)134985
NEW	VBS ssWW with taus	Full Run 2 (137/fb)	2.7 σ	CMS-SMP-22-008
	VBS Wy	Full Run 2 (137/fb)	Observation, differential XS + dim-8 EFT limits	PLB 811 (2020) 135988 arXiv:2212.12592, acc. PRD
Forward	VBS Zy	Full Run 2 (137/fb)	Observation, differential XS + dim-8 EFT limits	PRD 104 (2021) 072001
protons and {	VBS PPS yyVV	Full Run 2 PPS (100/fb)	Dim-6 and dim-8	arXiv:2211.16320, acc. JHEP
hadronic V			n EET coefficients	
		Stringent limits o		* Formila

Highlights on "Firsts":

- VBS osWW [arXiv:2205.05711]
 - ▶ Obs. (exp.) significance 5.6 (5.2)
 - Fiducial cross-sections:
 - 10.2 ± 2.0 fb (theory: 9.1 ± 0.6 fb)

VBS WV semileptonic [PLB 834 (2022) 137438]

▶ Evidence obs. (exp.) significance 4.4 (5.1) ▶ EW_{WV} xsec obs. (exp.) $1.90^{+0.53}_{-0.46}$ pb (2.23) ▶ μ_{EW} =0.85±0.12(stat) $^{+0.19}_{-0.17}$ (syst)

New:

tau decays

▶ VBS ssWW with τ_h [CMS-SMP-22-008]

- Main background nonprompt leptons from jets misreconstructed as e, μ , or τ_h
 - estimated from data, and validated in a CR
- Uncertainty is statistically dominated

٠	VBS ⁻	jet pair	invariant	mass	$M_{ii};$

- transverse mass $M_T(\ell, \vec{p}_T^{\text{miss}})$;
- transverse mass M_{1T} ;
- transverse mass *M*_{*o*1};

• p_T of leading VBS jet;

- *p*_T of subleading VBS jet;
- p_T of τ_h ;
- p_T of ℓ ;
- ratio of p_T of the leading track of the jet associated with τ_h to the $\tau_h p_T$.

 $M_{1\mathrm{T}}^2 = \left(\sqrt{M_{\tau l}^2 + p_T^{\tau l^2}} + p_T^{\mathrm{miss}}
ight)^2 - \left|\vec{p_T}^{\tau l} + \vec{p}_T^{\mathrm{miss}}
ight|^2,$

 $M_{\circ 1}^{2} = \left(p_{T}^{\tau} + p_{T}^{l} + p_{T}^{\text{miss}}\right)^{2} - \left|\vec{p_{T}}^{\tau} + \vec{p_{T}}^{l} + \vec{p_{T}}^{\text{miss}}\right|^{2}.$

Tau decay for the first time in VBS ssWW!

Fermilab

Signal	Significance $[\sigma]$				
Signal	Expected	Observed			
pure EW ssWW VBS	1.94	2.74			
EW + QCD ssWW VBS	2.04	2.87			

 τ high mass \rightarrow preferential coupling to the Higgs

Highlights on firsts:

VBS fully leptonic

Differential ssWW xsec measurement
 + observation of VBS WZ
 Obs. (exp.) significance 6.8(5.3)
 [PLB 809 (2020) 135710]

▶ Polarization in ssWW [PLB 812 (2020) 136018]
 ▶ obs. (exp.) xsec for W_L±W_L±: 1.17 (0.88) fb (in WW RF)
 ▶ obs. (exp.) significance for W_L±W_X±: 2.3 (3.1)

VBS PPS yyWW/ZZ [arXiv:2211.16320] (CMS+TOTEM)

- ▶ Upper limits on pp \rightarrow pWWp / pZZp cross sections
- aQGC limits w/o "clipping" for unitarity

arXiv:2212.12592

VBS Wy

- Final states: $e\nu\gamma$ + 2jets and $\mu\nu\gamma$ + 2jets
- Data-driven background estimate:
 - Template fit: non-prompt photon
 - Tight-loose method: non-prompt lepton
- · Fiducial and differential cross section
- Probes quadratic and triple gauge couplings
- Limits setting on EFT dim-8 operators

m_{wy} [TeV]

- Limits obtained varying the coefficient of one operator at a time
 all others set to zero (SM value).
- Unitary bound: scattering energy at which the aQGC coupling strength, when set equal to the observed limit, would result in a scattering amplitude that violates unitarity.

Expected limit	Observed limit	Ubound
$-5.1 < f_{M,0} / \Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4} / \Lambda^4 < 3.3$	$-3.7 < f_{M,4} / \Lambda^4 < 3.6$	2.3
$-3.4 < f_{M.5}/\Lambda^4 < 3.6$	$-3.9 < f_{M,5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M,7} / \Lambda^{+} < 13$	$-14 < f_{M7}/\Lambda^{2} < 14$	2.2
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T2} / \Lambda^4 < 0.92$	$-0.85 < f_{T2} / \Lambda^4 < 1.0$	2.3
$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T.5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T.6} / \Lambda^4 < 0.25$	$-0.25 < f_{T.6} / \Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	3.1

VBS Z_γ

• Final states: $\ell^+\ell^-\gamma$ + 2jets with $\ell = e, \mu$

W

W

- Main background QCD-induced Zγjj, from simulation, constrained in data
- Z+jets with selected photon not prompt, data-driven
- ▷ Obs. (exp.) significance 9.4 (8.5)
- Fiducial EW cross-sections:
 5.21 ± 0.52 (stat) ± 0.56 (syst) fb
- Provide several unfolded differential xsecs

• Uncertainty is statistically dominated

u			u			<u>PR</u>	D 10	<u>4 (20</u>	<u>21) (</u>	07200	1
			1		CMS			137	fb ⁻¹ (13	TeV)	
2 d	u		Vy* l v	Events / bin	10 ³ 10 ² 10 10	Dat EW QC	ia 2γ D Zγ	Nonpi ST,TT $-F_{T8}/\Lambda$ $-F_{T9}/\Lambda$	rompt γ Γγ,VV ⁴ = 0.47 ⁴ = 0.91	TeV ⁻⁴	
	Exp.	Exp.	Obs.	Obs.	Unitarity	0.4-0.0	0.0-0.8	0.0-1.0	m _{Zγ}	[TeV]	
Coupling	lower	upper	lower	upper	bound						
$F_{\rm M0}/\Lambda^4$	-12.5	12.8	-15.8	16.0	1.3						
$F_{\rm M1}/\Lambda^4$	-28.1	27.0	-35.0	34.7	1.5						
$F_{\rm M2}/\Lambda^4$	-5.21	5.12	-6.55	6.49	1.5						
$F_{\rm M3}/\Lambda^4$	-10.2	10.3	-13.0	13.0	1.8						
$F_{\rm M4}/\Lambda^4$	-10.2	10.2	-13.0	12.7	1.7						
$F_{\rm M5}/\Lambda^4$	-17.6	16.8	-22.2	21.3	1.7						
F_{M7}/Λ^4	-44.7	45.0	-30.0	0.57	1.0						
F_{T0}/Λ^{2}	-0.52	0.44	-0.04	0.57	2.0						
$F_{\rm T1}/\Lambda^4$	-1.36	1.21	-1.68	1 54	1.0						
F_{mr}/Λ^4	-0.45	0.52	-0.58	0.64	2.2						
$F_{\rm TC}/\Lambda^4$	-1.02	1.07	-1.30	1.33	2.0			Moc	ь I		
F_{T7}/Λ^4	-1.67	1.97	-2.15	2.43	2.2			vi05	L		
F_{T8}/Λ^4	-0.36	0.36	-0.47	0.47	1.8		str	inde	ont		
$F_{\rm T9}/\Lambda^4$	-0.72	0.72	-0.91	0.91	1.9		50	ac			
									_		

🗲 Fermilab

[PLB 812 (2021) 135992]

VBS ZZ Fully leptonic

- Main background: production of 2Z bosons + QCD-induced jets, from simulation, constrained in data
- Other irreducible backgrounds: processes with high-pT isolated leptons ttZ+jets and VVZ+jets, from simulation
- Reducible backgrounds: heavy-flavor jets produce secondary leptons or jets misidentified as leptons as Z+jets, tt+jets and WZ+jets
- Main uncertainty on Xsec measurements: QCD renormalization and factorization scales (signal) and jet energy scale ~10%
- Two approaches, the distributions of the SM processes, including the EW component, are normalized
 1) to their measured values in the EW signal extraction
 2) to their expected values.
- Uncertainty is statistically dominated

Coupling	5	Exp. lower	Exp. upper	Obs. lower		Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$		-0.37	0.35	-0.24 (-0.26)		0.22 (0.24)	2.4
$f_{\rm T1}/\Lambda^4$		-0.49	0.49	-0.31 (-0.34)		0.31 (0.34)	2.6
$f_{\rm T2}/\Lambda^4$		-0.98	0.95	-0.63(-0.69)		0.59 (0.65)	2.5
$f_{\rm T8}/\Lambda^4$		-0.68	0.68	-0.43(-0.47)		0.43 (0.48)	1.8
$f_{\rm T9}/\Lambda^4$		-1.5	1.5	-0.92 (-1.02)		0.92 (1.02)	1.8
					Most		
15	15 09/05/2023 Irene Zoi (<u>irene.zoi@cern.ch</u>) I EFT in Multiboson physics at CMS				stringent		Fermilad

Diboson Run2 results:

Interference resurrection

PROCESS	LUMI [fb ⁻¹]	RESULTS	REFERENCE
wz	Full Run 2 (137/fb)	Differential XS + aTGC limits	JHEP 07 (2022) 032
WW, WZ, ZZ	2017 (302/pb) 5.02 TeV	EWK XS	PRL 127 (2021) 191801
ZZ	Full Run 2 (137/fb)	XS + aTGC limits	EPJC 81 (2021) 200
osWW	2016 (35.9/fb)	XS + dim6 limits	PRD 102 (2020) 092001
WY	Full Run 2 (138/fb)	differential XS + dim-6 EFT limits	PRD 105 (2022) 052003 PRL 126 (2021) 252002

Stringent limits on EFT coefficients

‡ Fermilab

PRD 105 (2022) 052003

Wγ: interference resurrection

Prefit: good background modeling

Factor 10 improvement using the ϕ binning

			Best fit (C_{3W} (TeV ⁻²)	Observed 95	5% CL (TeV ⁻²)	Expected 95	5% CL (TeV ⁻²)
		$p_{\rm T}^{\gamma}$ cutoff (GeV)	SM + int. only	SM + int. + BSM	SM + int. only	SM + int. + BSM	SM + int. only	SM + int. + BSM
Ø	For Interpretations	200	-0.86	-0.24	[-2.01, 0.38]	[-0.76, 0.40]	[-1.16, 1.27]	[-0.81, 0.71]
	with highest bins	300	-0.25	-0.17	[-0.81, 0.34]	[-0.39, 0.28]	[-0.56, 0.60]	[-0.33, 0.33]
	beyond the validity of K	500	-0.13	-0.025	[-0.50, 0.25]	[-0.15, 0.12]	[-0.35, 0.38]	[-0.17, 0.16]
	the EFT or specific	800	-0.20	-0.033	[-0.49, 0.11]	[-0.10, 0.08]	[-0.29, 0.31]	[-0.097, 0.095]
	BSM model	1500	-0.13	-0.009	[-0.38, 0.17]	[-0.062, 0.052]	[-0.27, 0.29]	[-0.066, 0.065]

⊊≓ ⊢ermilab

Multiboson results* in CMS

Jet tagging

- B-tagging to reduce ttbar background
- (Boosted) W/Z tagging
 q/g discrimination

Could be applied to other tasks

One example: ParticleNet [PRD 101 (2020) 056019]

• Graph NN with jets as an unordered set of particles

- Particle cloud
 - particles are intrinsically unordered
 - primary information:
 - 2D coordinates in the η-φ space
 - Plus all other particle properties as momentum, charge, etc.

Jet tagging

B-tagging to reduce ttbar background

(Boosted) W/Z tagging
 q/g discrimination

Could be applied to other tasks

One example: ParticleNet [PRD 101 (2020) 056019]

• Graph NN with jets as an unordered set of particles

Polarization

- Challenging measurement: V_LV_L -> V_LV_L is ~10% of the total EW WW scattering cross section
 - Still! Significance of ~1 (3) standard deviations for WLWL (WLWX) in Run2 [PLB 812 (2020) 136018]
 - Extrapolating it the prediction at HL-LHC are improved wrt previous estimates
 - use of more sophisticated techniques to discriminate between signal and backgrounds

Dijets

8 TeV

• Can we improve the sensitivity? Can we use other channels?

(Boosted) hadronic channel has info on all final state objects! → but improvements are needed

2000

4000

Luminosity [fb⁻¹]

expected significance [o

, מערי מ CMS Phase-2 Projection

14 TeV

6000

More details?

- ▶ Run1 & Run2:
 - Observe SM rare processes
 - First EFT limits
 - Obtained varying the coefficient of one operator at a time (all others set to zero SM value).
- ▶ IF we see something, we need to characterize it
- Can we better describe the correlations among operators?
- ▶ [CMS DP -2023/027] uses a DNN to approximate the profiled ∆NLL with high accuracy
 - Samples ~50 million points across the 16D Wilson coefficient spac with the nuisances profiled away in the process
 - Regions with high likelihood are more heavily sampled to enhance DNN performance in these regions of interest.
 - Validated reproducing published 1D & 2D scans
 - Can be used also for reparametrizations in WC space

Do we see something?

Summary

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-08 23:47:39.259242 GMT Run / Event / LS: 276525 / 2665335317 / 1561

VBS jet

More to come!!

- Run2 is wrapping up:
 - First polarization
 - Some channels are still uncovered
 - Explored interference resurrection
 - Limit setting w/ clipping & unitary bound
 - And as a function of the cutoff
- New opportunities to get the most of Run3 & HL-LHC

Real VBS event

Thanks!

Many inputs from the Report from Standard Model Physics Analysis Group at Physics Days: Effective Field Theory Saptaparna Bhattacharya, Giacomo Boldrini, Andrew Gilbert, Pietro Govoni

Additional material

Overview of CMS cross section results

‡ Fermilab

		$\mathcal{L}_{a}^{(1)} - X^{3}$		$\mathcal{L}^{(6)}_{\alpha} - \psi^2 X H$		$\mathcal{L}_{c}^{(8b)} - (\bar{R}R)(\bar{R}R)$	
	Q_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \sigma^i H W^i_{\mu\nu}$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	
Y	$Q_{\widetilde{G}}$	$f^{abc} \widetilde{G}^{a u}_{\mu} G^{b ho}_{ u} G^{c\mu}_{ ho}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	
or	Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu \nu} T^a u_r) \widetilde{H} G^a_{\mu \nu}$	Q_{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	
je C	$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \widetilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	
T (6		$\mathcal{L}_6^{(2)}-H^6$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	
- k	Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)$	
ec		${\cal L}_6^{(3)} - H^4 D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^a u_r) (\bar{d}_s \gamma^\mu T^a d_t)$	
-ili	$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$			
e Je	Q_{HD}	$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$					
ve im		${\cal L}_6^{(4)} - X^2 H^2$		${\cal L}_6^{(7)} - \psi^2 H^2 D$		$\mathcal{L}_6^{(8c)}$ – $(ar{L}L)(ar{R}R)$	 Lico Warsow basis
iti d	Q_{HG}	$H^{\dagger}H G^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
ec at	$Q_{H\overline{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
iffe is a	Q_{HW}	$H^{\dagger}H W^{i}_{\mu\nu}W^{I\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
E S	$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	 Gauge boson self-
of to	Q_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i D^{i}_{\mu} H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	interactions highlighted
ra	$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i D_{\mu}H)(\bar{u}_p \gamma^{\mu} u_r)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{u}_s \gamma^\mu T^a u_t)$	
) Me	Q_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
sle op	$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hud} + h.c.	$i(H^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{d}_s \gamma^\mu T^a d_t)$	
		$\mathcal{L}_{6}^{(5)} - \psi^{2}H^{3}$	L	$\frac{(8a)}{6} - (LL)(LL)$	$\mathcal{L}_{6}^{(8d)}$	(LR)(RL), (LR)(LR)	
n	Q_{eH}	$(H^{\dagger}H)(l_p e_r H)$	Q_{ll}	$(l_p \gamma_\mu l_r)(l_s \gamma^\mu l_t)$	Q_{ledq}	$(l_p^j e_r)(d_s q_{tj})$	
	Q_{uH}	$(H^{\dagger}H)(\bar{q}_p u_r \bar{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	
	Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}\bar{H})$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$	
			$Q_{lq}^{(1)}$	$(l_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(l_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	
			$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^i l_r)(\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

II slew of Effective Filed The operators at dimension-6
Full sl op

$\mathcal{L}_6^{(1)}-X^3$			${\cal L}_6^{(6)}-\psi^2 X H$	$\mathcal{L}_6^{(8b)} - (ar{R}R)(ar{R}R)$		
Q_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu \nu} e_r) \sigma^i H W^i_{\mu \nu}$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{\widetilde{G}}$	$f^{abc}\widetilde{G}^{a u}_{\mu}G^{b ho}_{ u}G^{c\mu}_{ ho}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	
Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \tilde{H} G^a_{\mu\nu}$	Q_{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	
$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \tilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	
	$\mathcal{L}_6^{(2)}-H^6$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	
Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	
	$\mathcal{L}_6^{(3)}-H^4D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^a u_r) (\bar{d}_s \gamma^\mu T^a d_t)$	
$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$			
Q_{HD}	$\left(D^{\mu}H^{\dagger}H\right)\left(H^{\dagger}D_{\mu}H\right)$					
	$\mathcal{L}_6^{(4)}-X^2H^2$		$\mathcal{L}_6^{(7)}-\psi^2 H^2 D$		$\mathcal{L}_6^{(8c)}-(ar{L}L)(ar{R}R)$	
Q_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^\dagger i \overleftarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{H\overline{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
Q_{HW}	$H^{\dagger}HW^{i}_{\mu\nu}W^{I\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r)(\bar{u}_s \gamma^\mu T^a u_t)$	
Q_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{H \widetilde{W} B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B^{\mu\nu}$	$Q_{Hud} + {\rm h.c.}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{d}_s \gamma^\mu T^a d_t)$	
$\mathcal{L}_6^{(5)}-\psi^2 H^3$		L	${}_{6}^{(8a)} - (\bar{L}L)(\bar{L}L)$	$\mathcal{L}_{6}^{(8d)}$	$(\bar{L}R)(\bar{R}L),(\bar{L}R)(\bar{L}R)$	
Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$	
		$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	
		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^i l_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{lequ}^{\left(3 ight)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

• Use Warsaw basis

 Gauge boson selfinteractions highlighted

PRD 104 (2021) 072001

🗲 Fermilab

VBS Z_γ

30

- $\ell + \ell \gamma j j$ final states ($\ell = e \text{ or } \mu$)
- Main background QCD-induced Zγjj, from simulation, constrained in data
- Z+jets with selected photon is not prompt, data-driven

Exp.

upper

12.8

27.0

5.12

10.3

10.2

16.8

45.0

0.44

0.63

1.21

0.52

1.07

1.97

0.36

0.72

Exp.

lower

-12.5

-28.1

-5.21

-10.2

-10.2

-17.6

-44.7

-0.52

-0.65

-1.36

-0.45

-1.02

-1.67

-0.36

-0.72

Coupling

Obs.

lower

-15.8

-35.0

-6.55

-13.0

-13.0

-22.2

-56.6

-0.64

-0.81

-1.68

-0.58

-1.30

-2.15

-0.47

-0.91

Obs.

upper

16.0

34.7

6.49

13.0

12.7

21.3

55.9

0.57

0.90

1.54

0.64

1.33

2.43

0.47

0.91

Unitarity

bound

1.3

1.5

1.5

1.8

1.7

1.7

1.6

1.9

2.0

1.9

2.2 2.0

2.2

1.8

1.9

Best

- Cross section in the fiducial volume
 - EW Zyjj: 5.21±0.52(stat)±0.56(syst) fb
 - EW and QCD-induced Zγjj:

14.7±0.80(stat)±1.26(syst) fb

Common selection	$p_{\rm T}^{\ell_1,\ell_2} > 25 \text{ GeV}, \ \eta^{\ell_1,\ell_2} < 2.5$
	for electron channel
	$p_{\mathrm{T}}^{\ell 1, \ell 2} > 20 \text{ GeV}, \eta^{\ell 1, \ell 2} < 2.4$
	for muon channel
	$p_{\rm T}^{\gamma} > 20 \text{ GeV}, \eta^{\gamma} < 1.442$
	or $1.566 < \eta^{\gamma} < 2.500$
	$p_{\rm T}^{\rm j1,j2} > 30 {\rm ~GeV}, \eta^{\rm j1,j2} < 4.7$
	$70 < m_{\ell\ell} < 110 \text{ GeV}, m_{Z\gamma} > 100 \text{ GeV}$
	$\Delta R_{\rm jj}, \ \Delta R_{\rm j\gamma}, \ \Delta R_{\rm j\ell} > 0.5, \ \Delta R_{\ell\gamma} > 0.7$
Fiducial volume	Common selection,
	$m_{\rm jj} > 500 {\rm ~GeV}, \Delta \eta_{\rm jj} > 2.5$
Control region	Common selection, $150 < m_{jj} < 500 \text{ GeV}$
EW signal region	Common selection, $m_{ii} > 500$ GeV,
	$ \Delta\eta_{ m jj} >2.5,\eta^*<2. ilde{4},\Delta\phi_{Z\gamma, m jj}>1.9$
aQGC search region	Common selection, $m_{ii} > 500$ GeV,
	$ \Delta n_{ii} > 2.5, p_T^{\gamma} > 120 \text{ GeV}$

VBS PPS yyWW/ZZ

- ξ : fractional momentum loss of forward proton > 0.05
- Standard VV selection and mj1+ mj2 to distinguish
 WW from ZZ
 Precision Proton Spectrometer (PPS)
- Proton-jet matching requirements
- Data-driven bkg estimation in 3 SBs
 - 2 jets (QCD, V+jets, ttbar)
 - Protons from pileup/diffractive collisions or fake proton tracks from showers/beam bckg
- Main uncertainties: jet energy scale, proton ξ measurement, proton reconstruction efficiency, and integrated luminosity
- ML fit in 12 bins: 3 years, WW vs ZZ SR and 2 or 1 signal protons

CMS + TOTEM

arXiv:2211.16320

arXiv:2211.16320

VBS PPS yyWW/ZZ

VBS ssWW & VBS WZ

Fully leptonic

 $z_{\ell}^{*} = \left|\eta^{\ell} - \frac{\eta^{j_{1}} + \eta^{j_{2}}}{2}\right| / |\Delta \eta_{jj}|$

[PLB 809 (2020) 135710]

- Background estimation with CR in data & simulation
 - Simultaneous fit of WZ and W±W± SR
 - data-to-simulation efficiency correction for charge-misidentified electron

Variable	$W^{\pm}W^{\pm}$	WZ
Leptons	2 leptons, $p_{\rm T} > 25/20 {\rm GeV}$	3 leptons, $p_{\rm T} > 25/10/20 {\rm GeV}$
p_T^j	>50 GeV	>50 GeV
$ m_{\ell\ell} - m_Z $	>15 GeV (ee)	<15 GeV
$m_{\ell\ell}$	>20 GeV	-
$m_{\ell\ell\ell}$	-	>100 GeV
$p_{\rm T}^{\rm miss}$	>30 GeV	>30 GeV
b quark veto	Required	Required
$\max(z_{\ell}^*)$	<0.75	<1.0
m _{jj}	>500 GeV	>500 GeV
$ \Delta \eta_{jj} $	>2.5	>2.5

Table 3

List and description of all the input variables used in the BDT analysis for the WZ SR.

Variable	Definition
m_{jj} $ \Delta \eta_{jj} $	Mass of the leading and trailing jets system Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{ii}$	Absolute difference in azimuthal angles of the leading and trailing jets
$p_{\mathrm{T}}^{\mathrm{j1}}$	$p_{\rm T}$ of the leading jet
$p_{T_{c}}^{j2}$	$p_{\rm T}$ of the trailing jet
η^{j1}	Pseudorapidity of the leading jet
$ \eta^{W} - \eta^{Z} $	Absolute difference between the rapidities of the Z boson and the
	charged lepton from the decay of the W boson
$z_{\ell_i}^* (i = 1 - 3)$	Zeppenfeld variable of the three selected leptons
$z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the three leptons
$\Delta R_{j1,Z}$	ΔR between the leading jet and the Z boson
$ \vec{p}_{\mathrm{T}}^{\mathrm{tot}} /\sum_{i} p_{\mathrm{T}}^{i}$	Transverse component of the vector sum of the bosons and tagging jets momenta, normalized to their scalar $p_{\rm T}$ sum

VBS ssWW & VBS WZ Fully

Fully leptonic

[PLB 809 (2020) 135710]

- EW WZ obs. (exp.) significance 6.8 (5.3)
- EW W±W± signal >> 5 standard deviations

Dim-8 limits (cutting the EFT expansion at the unitarity limit)

	Observed $(W^{\pm}W^{\pm})$ (TeV^{-4})	Expected $(W^{\pm}W^{\pm})$ (TeV^{-4})	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
$f_{\rm TO}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
$f_{\rm T2}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]

Fermilad

VBS ZZ Fully leptonic

- Main bckg: production of 2Z bosons + QCD-induced jets, estimated from simulation but further constrained in data
- Other irreducible bckgs: processes with high-pT isolated leptons ttZ+jets and VVZ+jets, from simulation
- Reducible bckgs: heavy-flavor jets produce secondary leptons or jets misidentified as leptons as Z+jets, tt+jets and WZ+jets
- Main unc: QCD renormalization and factorization scales (signal) and jet energy scale ~10%
- signal strength for the EW production,
- $\mu = \sigma / \sigma SM$, extracted with matrix element discriminant (KD)

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24 (-0.26)	0.22 (0.24)	2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31 (-0.34)	0.31 (0.34)	2.6
f_{T2}/Λ^4	-0.98	0.95	-0.63 (-0.69)	0.59 (0.65)	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43 (-0.47)	0.43 (0.48)	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92 (-1.02)	0.92 (1.02)	1.8
			Bes	ι	
					🛑 🛟 Fermilab

Polarized VBS ssWW

Fully leptonic

- Electron charge misidentification in simulation is corrected to reproduce the rate measured in data, using Z→ee events: mis. rate is about 0.01% (0.3%) in the barrel (endcap) region. Contri [50]. Contribution in OS dilepton final states from t⁻t, tW, W+W-, and Drell-Yan
- CRs to estimate the normalization of the main backgrounds from data: WZ, nonprompt lepton, tZq, and ZZ
- 2 fits are performed for the cross-sections on 2D variable (inclusive + signal BDTs)
 - \bullet WL± WL± and WX±WT±
 - WL \pm WX \pm and WT \pm WT \pm

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)	
$W^{\pm}_L W^{\pm}_L$	$0.32\substack{+0.42\\-0.40}$	0.44 ± 0.05	-
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$		obs. (exp.) significance
$W_{I}^{\pm}W_{x}^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18	WI +WX+ 2 3 (3 1)
$w_T^{\pm}w_T^{\pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21	
$W_I^{\pm}W_I^{\pm}$	$0.24^{+0.40}_{-0.37}$	0.28 ± 0.03	
$W_X^{\pm}W_T^{\pm}$	$3.25_{-0.48}^{+0.50}$	^{3.32 ± 0.37} Partons	obs. (exp.) significance
$W_L^{\pm}W_X^{\pm}$	$1.40\substack{+0.60\\-0.57}$	1.71 ± 0.19 RF	10/1 + 10/2 + 26(2.9)
$W_T^{\pm}W_T^{\pm}$	$2.03^{+0.51}_{-0.50}$	1.89 ± 0.21	VVL±VV/X± 2.0 (2.3)

Variables	Defin	itions				
$\Delta \phi_{ m jj}$	Diffe suble	ence in azim ading jets	uthal angle b	etween the l	eading and	
$p_{\mathrm{T}}^{\mathrm{j}1}$	$p_{\rm T}$ of	the leading	jet			
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{\rm T}$ of	the subleadi	ng jet			
$p_{\mathrm{T}}^{\ell_1}$	Leadi	ng lepton p_T				
$p_{\mathrm{T}}^{\ell_2}$	Suble	ading lepton	p_{T}			
$\Delta \phi_{\ell\ell}$	Diffe	rence in azim	uthal angle b	etween the t	wo leptons	
$m_{\ell\ell}$	Dilep	ton mass				
$p_{\mathrm{T}}^{\ell\ell}$	Dilep	ton $p_{\rm T}$				
$m_{\mathrm{T}}^{\mathrm{WW}}$	Trans	ransverse WW diboson mass				
$z^*_{\ell_1}$	Zepp	enfeld variabl	e of the lead	ing lepton		
$Z^*_{\ell_2}$	Zepp	enfeld variabl	e of the subl	eading leptor	ı	
$\Delta R_{j1,\ell\ell}$	$\Delta R b$	R between the leading jet and the dilepton system				
$\Delta R_{j2,\ell\ell}$	ΔR b	etween the s	ubleading jet	and the dile	pton system	
$(p_{\rm T}^{\ell_1} p_{\rm T}^{\ell_2})/(p_{\rm T}^{J_1} p_{\rm T}^{J_2})$	Ratio	of $p_{\rm T}$ produce	ts between l	eptons and je	ets	
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missi	ng transverse	momentum			
ource of uncertainty		$W^\pm_L W^\pm_L \ (\%)$	$W_X^{\pm}W_T^{\pm}$ (%)	$W_L^{\pm}W_X^{\pm}$ (%)	$W^\pm_T W^\pm_T$ (%)	
ntegrated luminosity		3.2	1.8	1.9	1.8	
epton measurement		3.6	1.9	2.5	1.8	
et energy scale and resolu	ution	11	2.9	2.5	1.1	
Pileup		0.9	0.1	1.0	0.3	
tagging		1.1	1.2	1.4	1.1	
onprompt lepton rate		17	2.7	9.3	1.6	
rigger		1.9	1.1	1.6	0.9	
imited sample size		38	3.9	14	5.7	
heory		6.8	2.3	4.0	2.3	
otal systematic uncertain	ty	44	6.6	18	7.0	
Statistical uncertainty		123	15	42	22	
otal uncertainty		130	16	46	23	

Polarization

31

Fully leptonic

[CMS-PAS-FTR-21-001]

Luminosity [fb⁻¹]

U9/U5/2023 Irene ∠ol (Irene.zol@cern.cn) I EF I in Multiposon physics at CMS

VBS osWW Fully leptonic

- VBS SR in 3 channels ee, μμ, eμ
- DY & ttbar CR
- Dedicated DNN for the eµ channel
- Signal strength from fit in SR+CR

Inclusive cross section 99 ± 20 fb (89 ± 5 fb theory)

Fiducial cross section 10.2 ± 2.0 fb (9.1 ± 0.6 fb theory)

	Objects	Requirements		
		$e\mu$, ee , $\mu\mu$ (not from τ decay), opposite charge $p_{\tau}^{dressed \ell} = p_{\tau}^{\ell} + \sum_{i} p_{\tau}^{\gamma_{i}}$ if $\Delta R(\ell, \gamma_{i}) < 0.1$	Variable	Ι
	Leptons	$p_{\rm T}^{\ell_1} > 25 { m GeV}, p_{\rm T}^{\ell_2} > 13 { m GeV}, p_{\rm T}^{\ell_3} < 10 { m GeV}$	m _{jj}	I
		$ \eta < 2.5$	$\Delta \eta_{ m ii}$	F
		$p_{\mathrm{T}}^{\ell\ell} > 30 \mathrm{GeV}, m_{\ell\ell} > 50 \mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{j_1}}$	Þ
	Jets	$p_{\rm T}^j > 30{ m GeV}$	$p_{\mathrm{T}}^{\mathbf{j}_2}$	Þ
		$\Delta R(j,\ell) > 0.4$	$p_{\mathrm{T}}^{\ell\ell}$	Þ
		At least 2 jets, no b jets	$\Delta \phi_{\ell\ell}$	ŀ
		$ \eta < 4.7$	Z_{ℓ_1}	Z
		$m_{ m jj} > 300{ m GeV}$, $\Delta\eta_{ m jj} > 2.5$	Z_{ℓ_2}	Z
	$p_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T}^{\rm miss} > 20 { m GeV}$	$m_{\mathrm{T}}^{\ell_1}$	Т
		· •		

	EU DINN
Variable	Description
m _{ij}	Invariant mass of the two tagging jets pair
$\Delta \eta_{ m jj}$	Pseudorapidity separation between the two tagging jets
$p_{ m T}^{{ m j}_1}$	p_{T} of the highest p_{T} jet
$p_{ m T}^{{ m j}_2}$	$p_{ m T}$ of the second-highest $p_{ m T}$ jet
$p_{\mathrm{T}}^{\ell\ell}$	$p_{\rm T}$ of the lepton pair
$\Delta \phi_{\ell\ell}$	Azimuthal angle between the two leptons
Z_{ℓ_1}	Zeppenfeld variable of the highest $p_{\rm T}$ lepton
Z_{ℓ_2}	Zeppenfeld variable of the second-highest $p_{\rm T}$ lepton
$m_{\mathrm{T}}^{\ell_1}$	Transverse mass of the $(p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\mathrm{miss}})$ system

DATAL

Fiducial volume: Requirements at Gen level

VBS WV (SM) semi-leptonic

- Large BR but large irreducible backgrounds
- No public predictions beyond LO accuracy for semileptonic signatures
- Advances in signal modeling of partonshower effects (Dipole recoil scheme used for the first time) [arXiv:1710.00391]
- Data-driven bkg estimation for Top and W+jets backgrounds:
 - Top: one free floating parameter per category in the ML fit
 - Wjets: several free floating parameters • per category in the ML fit, to perfect the modeling of VBS-jets momenta.
- Main uncertainties: statistical, theoretical and b-tagging

qq

qq

D

Nonpromp W+Jets

DNN boosted

Resolved

SHAP ranking

VBS WV/ZV (dim-8)

semi-leptonic

- Includes also a search for charged Higgs bosons
- Main bckg V+jets from data is SB region
 - Fit of the mwv & mzv & obtain transfer factor
- Unitarity constraints not included
- First aQGC search in this channel

Observed (WV) Observed (ZV) Observed Expected (WV) Expected (ZV) Expected (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) f_{S0}/Λ^4 [-4.2, 4.2][-2.7, 2.7][-4.2, 4.2][-40, 40][-31, 31][-2.7, 2.7] $f_{\rm S1}/\Lambda^4$ [-3.3, 3.4][-5.2, 5.2][-32, 32][-24, 24][-3.4, 3.4][-5.2, 5.2] $f_{\rm M0}/\Lambda^4$ [-0.69, 0.69][-1.0, 1.0][-7.5, 7.5][-5.3, 5.3][-0.69, 0.70][-1.0, 1.0] f_{M1}/Λ^4 [-2.0, 2.0][-3.0, 3.0][-22, 23][-16, 16][-2.0, 2.1][-3.0, 3.0] $f_{\rm M6}/\Lambda^4$ [-15, 15][-1.3, 1.3][-1.4, 1.4][-1.4, 1.4][-2.0, 2.0][-11, 11] f_{M7}/Λ^4 [-3.4, 3.4][-5.1, 5.1][-35, 36][-25, 26][-3.4, 3.4][-5.1, 5.1] $f_{\rm T0}/\Lambda^4$ [-0.12, 0.11][-0.17, 0.16][-1.4, 1.4][-1.0, 1.0][-0.12, 0.11][-0.17, 0.16] f_{T1}/Λ^4 [-0.12, 0.13][-0.18, 0.18][-1.5, 1.5][-1.0, 1.0][-0.12, 0.13][-0.18, 0.18] f_{T2}/Λ^4 [-3.4, 3.4][-0.28, 0.28][-0.41, 0.41][-0.28, 0.28][-0.41, 0.41][-2.4, 2.4]

[JHEP 05 (2014)146]

Softdrop

• Soft drop: reduce the jet contamination from initial state radiation, underlying event and pileup

- 1. Jet j clustered with CA
- 2. Decluster last step and obtain j1 and j2
- 3. Check if soft drop condition is satisfied

j is the final SD jet decluster jet with higher p⊤, remove the other, Repeat

Nsubjettiness

٠

N-subjettiness τ_N tells how likely a jet has N subjets

[arXiv:1011.2268]

- $\tau_{\rm N} \sim 0$: N subjets likely
- $\tau_N >> 0$: more than N subjets likely

QG likelihood [CMS DP -2016/070]

Quark-gluon discrimination variables from simulation: (a) $p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i n_{T,i}}$ (b) multiplicity (c) $-loq(\sigma_2)$, where σ_2 is the ellipse minor axis (d) the Quark-Gluon Likelihood.

Main differences are:

(13 TeV)

CMS

(13 TeV)

CMS

gluon quark

80 < p_ < 100 GeV

0 < ml < 1.3

30 35 40

aluon auark

80 < p_ < 100 GeV

 $0 < |\eta| < 1.3$

0.6

quark

gluon

- the **particle multiplicity** is higher in gluon jets than in lightquark jets;
- the fragmentation function of gluon jets is considerably softer than that of a quark jet;
- gluon jets are less collimated than quark jets.

🚰 Fermilab

ParticleNet [Phys. Rev. D 101 (2020) 056019]

- Customized neural network architecture based on the particle cloud representation → jet as an unordered set of particles
 - Uses a permutation-invariant graph neural network architecture
- In CMS:
 - multi-class tagger for t/W/Z/H tagging
 - same inputs as DeepAK8 (PF candidates/secondary vertices)
 - significant performance improvement
 - Mass decorrelation obtained with training using a dedicated signal sample with flat mass spectrum: $m_X \in [15, 250]$ GeV

44 09/05/2023 Irene Zoi (irene.zoi@cern.ch) I EFT in Multiboson physics at CMS

DeepJet

- DeepJet: Deep neural network algorithm
 - 16(8) properties of up to 25 charged (neutral) particle-flow jet constituents

[JINST 15 (2020) P12012]

• 12 properties of up to 4 secondary vertices associated with the jet

• 2 Comparable approches to DeepJet [CMS-DP-2017-027]

Long short-term memory (LSTM)

🛟 Fermilab

 End-to-end jet classification [NIM A 977 (2020) 164304]

‡ Fermilab