CONSIDERATIONS FOR SMEFT FITS

S. Dawson, BNL Fermilab CMS Workshop September 5, 2023

Complaints, suggestions to dawson@bnl.gov

IT APPEARS THAT NEW PHYSICS IS HEAVY (> I TEV)

Searching for new physics as an expansion around the SM assuming no new light particles is reasonable

S. Dawson, BNL

- Suggests that the SM is a good approximation to physics at the weak scale
- Power of SMEFT is potential to combine this information

S. Dawson, BNL

HIGH SCALE DECOUPLING

- Suppose there is a new particle X, with mass $M_X >> M_W$
- SM scattering: • Contribution from X: $A_{SM} \sim \frac{g^2}{M_Z^2}$ • Contribution $A_X \sim \frac{g^2}{M_X^2}$
- Scattering rate:

$$\sigma \sim \sigma_{SM} + \frac{g^2 g_X^2}{M_X^2} \to \sigma_{SM}$$

Effects of X vanish as $1/M_X^2$ for weak coupling This is implicit assumption as we construct SMEFT

S. Dawson, BNL *Note: Higgs is example of non-decoupling particle

ASSUME A HIERARCHY OF SCALES

- Any new particles or symmetries are at this scale
- Expect effects of heavy particles at low scales to be suppressed

This is sad scenario where there is no intermediate scale physics

 M_{W}

Only SM particles in theory at low scales

Learn about high scale physics by measuring coefficients of effective operators with global fits

S. Dawson, BNL

SMEFT: SM EFFECTIVE FIELD THEORY

- Assumptions: New physics decouples $\Lambda \gg v$, E
- At the weak scale: SM SU(3) \times SU(2) \times U(1) symmetry and SM particles only
- New physics described by

$$L_{SMEFT} = L_{SM} + \frac{L_5}{\Lambda} + \frac{L_6}{\Lambda^2} + \frac{L_7}{\Lambda^3} + \frac{L_8}{\Lambda^4}$$
$$L_n = \sum_i C_i^n O_i^n$$

Assume Higgs is in an SU(2) doublet

- New physics contributions contained in coefficients C (can calculate in specific models)
- Operators form a complete basis (not unique)
- L_5 and L_7 are lepton number violating

S. Dawson, BNL

WARSAW BASIS

	X ³	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{*}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_{\tau}) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{\tau})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu \nu} d_r) \tau^I \varphi W^I_{\mu \nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Ī	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
	Q_{u}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_\tau) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$
	$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{dd}	$(d_p\gamma_\mu d_r)(d_s\gamma^\mu d_t)$	Q_{ld}	$(l_p\gamma_\mu l_r)(d_s\gamma^\mu d_t)$
	$Q_{lq}^{(1)}$	$(l_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
	$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
					$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$
	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
	Q_{ledq} $(l_p^j e_r)(d_s q_t^j)$			$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$		
	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(u_s^{\gamma})^T C e_t \right]$			
	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^{A} u_r) \varepsilon_{jk} (\bar{q}_s^k T^{A} d_t)$	$Q_{qqq} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			$\left[(q_s^{\gamma m})^T C l_t^n \right]$
	$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{\tau})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_{p}^{\alpha})^{T}\right]$	Cu_r^β]	$\left[(u_s^{\gamma})^T Ce_t\right]$
	$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$				

+.....

- The interesting operators are those with derivatives
- Derivative operators introduce new structures into kinematic distributions
- Most of 2499 operators come from flavor permutations (76 baryon number conserving operators for 1 generation)

COMPLICATED

 Power of SMEFT is connection of data from different processes

S. Dawson

DIMENSION-8

- We now have complete dimension-8 basis
- Too many operators to be useful for global fits
 - 895 (36,971) baryon number preserving for 1 (3) generation
- Study impact of some (cherry picked) operators to get a feel for relevance
- Try to limit number of operators by assuming specific structures for UV scenarios

DIMENSION-6 VS DIMENSION-8?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

• SMEFT

$$A^{2} \sim |A_{SM} + \frac{A_{6}}{\Lambda^{2}} + \dots |^{2} \sim A_{SM}^{2} + \frac{A_{SM}A_{6}}{\Lambda^{2}} + \frac{A_{6}^{2}}{\Lambda^{4}} + \dots$$

- Problem is that $(A_6)^2$ terms are the same order as A_8 terms that we have dropped when counting in $1/\Lambda$
- If we only keep A_6/Λ^2 terms and drop $(A_6/\Lambda^2)^2$, the cross section is not guaranteed to be positive-definite
- Corrections are $O(s/\Lambda^2)$ or $O(v^2/\Lambda^2)$

AGNOSTIC APPROACH TO EFFECTS OF DIM-8 TERMS

- Measurable effects in WH production by searching for maximum allowed values of dimension-8 coefficients consistent with a valid EFT expansion, O(10%)
- C_{HW} is dim-6 coefficient with values allowed by global fits
- Can try to enhance dim-8 effects by going to high $M_{\rm HW}$
- Dimension-8 operators $D^3(\overline{q}_L q_L H^{\dagger} H)$ have linear growth with energy

Can this happen in a real model?

S. Dawson, BNL

Hays, Martin, Sanz, Setford, 1808.00442

GOAL IS TO INFER BSM PHYSICS FROM PATTERNS OF COEFFICIENTS

- Compare models with new scalars or new heavy top/bottom VLQs at the high energy scale
- Do global fits to just the sets of operators generated in these models
- Fits can restrict high scale models

Do dimension-8 terms invalidate this type of study?

S. Dawson, BNL

Type I 0.25 0.25 0.2 0.2 $|\cos(\beta)|$ Coupling 0.15 strength (mixing angle) 0.1 of high scale 0.05 0.05 new physics Type II 0 (TB) 2HDM 2HDM \mathbb{Z}_2 (TB) (TB) (TB) \mathbb{Z}_2 M = 1 TeVM = 5 TeVM = 1 TeV $\tan\beta \rightarrow \infty$ Scale of new physics SD, Homiller, Lane, 2007.01296 *These are particularly simple toy models

Limits from SMEFT Global Fits

2HDM IS A GOOD TESTING GROUND

- Consider model with 2 Higgs doublets, Φ_1 and Φ_2 with a softly broken Z_2 symmetry: $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow - \Phi_2$
- 5 physical Higgs bosons, h₁₂₅, H₀, A, H[±]
- Rotate to the Higgs basis In this basis $\langle H_2 \rangle = 0, \langle H_1 \rangle = v/\sqrt{2}$ $\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix},$
- Very convenient for SMEFT studies

$$\begin{split} V = & Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + \left(Y_3 H_1^{\dagger} H_2 + \text{h.c.} \right) + \frac{Z_1}{2} \left(H_1^{\dagger} H_1 \right)^2 \\ & + \frac{Z_2}{2} \left(H_2^{\dagger} H_2 \right)^2 + Z_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + Z_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) \\ & + \left\{ \frac{Z_5}{2} \left(H_1^{\dagger} H_2 \right)^2 + Z_6 \left(H_1^{\dagger} H_1 \right) \left(H_1^{\dagger} H_2 \right) + Z_7 \left(H_2^{\dagger} H_2 \right) \left(H_1^{\dagger} H_2 \right) + \text{h.c.} \right\} \end{split}$$

• Z's can be written in terms of physical parameters $v,\,eta\!-\!lpha,\,m_{h_{125}},\,Y_2,\,m_{H_0},\,m_A,\,m_{H^\pm}$ S. Dawson, BNL

2HDM CONTINUED

• 4 choices for fermion Yukawas (avoid tree level FCNC)

 $\mathcal{L}_{Y} \sim -\lambda_{u}^{(1)} \bar{u}_{R} \tilde{H}_{1}^{\dagger} q_{L} - \lambda_{u}^{(2)} \bar{u}_{R} \tilde{H}_{2}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(2)} \bar{d}_{R} H_{2}^{\dagger} q_{L} + h.c.$ $\lambda_{f}^{(1)} = \frac{\sqrt{2}}{v} m_{f} \qquad \lambda_{f}^{(2)} = \frac{\eta_{f}}{\tan\beta} \lambda_{f}^{(1)}$

	Type-I	Type-II	Type-L	Type-F
η_u	1	1	1	1
7Ja	1	$-\tan^2\beta$	1	$-\tan^2\beta$
η_l	1	$-\tan^2\beta$	$-\tan^2\beta$	1

- Type II is MSSM-like
- Type I has enhanced (suppressed) couplings to b quarks at small (large) tan β

MATCH TO SMEFT AT DIMENSION-6

- At dimension-6, observables depend on C/Λ^2 (ie you can't determine a scale independently of assumptions about coefficients, C)
- Decoupling limit: $(Y_3/Y_2) \le 1$ [which implies $\cos(\beta-\alpha) M^2/v^2$]
- At tree level dimension-6, 2HDM SMEFT matching generates:

$$\frac{v^2 C_H}{\Lambda^2} = \frac{\cos^2(\beta - \alpha)M^2}{v^2} \qquad \qquad \frac{v^2 C_{tH}}{\Lambda^2} = -\frac{\eta_t \sqrt{2}m_t \cos(\beta - \alpha)}{v \tan \beta}$$
$$\frac{v^2 C_{bH}}{\Lambda^2} = -\frac{\eta_b \sqrt{2}m_b \cos(\beta - \alpha)}{v \tan \beta} \qquad \qquad \frac{v^2 C_{\tau H}}{\Lambda^2} = -\frac{\eta_\tau \sqrt{2}m_\tau \cos(\beta - \alpha)}{v \tan \beta}$$

Dimension-6 matching does NOT generate 2HDM VVh₁₂₅ couplings!

$$O_{fH} = (H^{\dagger}H)(\overline{q}_L \tilde{H} f_R) \qquad O_H = (H^{\dagger}H)^3 \qquad \frac{C_H}{\Lambda^2} \sim (...)\delta\lambda_3$$

S. Dawson, BNL

* M is common mass of heavy scalars

2HDM SMEFT AND RGE

- Operators generated from 2HDM matching don't contribute to EWPOs at tree level
- Limits from Higgs data
- Matching done at high scale, then coefficients evolved to M_Z using renormalization group running
- This generates new operators which contribute to diboson production
- Effect of RGE running small for O_{fH} operators

SMEFT matching to type-II 2HDM

Model predictions are straight lines

2HDM SMEFT AND HIGGS TRI-LINEAR

- Higgs tri-linear coupling limited from Higgs measurements at 1-loop
- Effects of RGE running more significant here

MATCH 2HDM TO DIMENSION-8

- Matching generates new operators, some with new kinematic structures
- Dimension-8 coefficients can all be written in terms of parameters of 2HDM
- Also need relations between gauge couplings and input parameters $(G_{F_{r}}M_{VV}, M_{Z})$ to dimension-8

$$\begin{split} & \mathcal{L}_{8} \sim \frac{1}{\Lambda^{4}} \left\{ C_{H^{8}} (H^{\dagger} H)^{4} + C_{H^{6}}^{(1)} (H^{\dagger} H)^{2} \left(D_{\mu} H \right)^{\dagger} \left(D^{\mu} H \right) + \left\{ C_{quH^{5}} (H^{\dagger} H)^{2} \bar{q}_{L} u_{R} \tilde{H} \right. \\ & + C_{quH^{3}D^{2}}^{(1)} (D_{\mu} H)^{\dagger} (D^{\mu} H) \bar{q}_{L} u_{R} \tilde{H} + C_{quH^{3}D^{2}}^{(2)} \left[(D_{\mu} H)^{\dagger} \tau^{a} (D^{\mu} H) \right] \left[\bar{q}_{L} u_{R} \tau^{a} \tilde{H} \right] \\ & + C_{quH^{3}D^{2}}^{(5)} \left[(D_{\mu} H)^{\dagger} H \right] \left[\bar{q}_{L} u_{R} \widetilde{D^{\mu} H} \right] + C_{qdH^{5}} (H^{\dagger} H)^{2} \bar{q}_{L} d_{R} H \\ & + C_{qdH^{3}D^{2}}^{(1)} (D_{\mu} H)^{\dagger} (D^{\mu} H) \bar{q}_{L} d_{R} H + C_{qdH^{3}D^{2}}^{(2)} \left[(D_{\mu} H)^{\dagger} \tau^{a} (D^{\mu} H) \right] \left[\bar{q}_{L} d_{R} \tau^{a} H \right] \\ & + C_{qdH^{3}D^{2}}^{(5)} (H^{\dagger} D_{\mu} H) (\bar{q}_{L} d_{R} D^{\mu} H) + h.c. \right\} + 4 \; Fermion \bigg\} \end{split}$$

Note: O_{H6}⁽¹⁾ gives VVh₁₂₅ coupling

S. Dawson, BNL

DIMENSION-8 MATTERS IN 2HDM

- Single parameter fits to coefficients that occur at dimension-6.
- Including I/Λ^4 (dim-6 + dim-8) matters for some coefficients

S. Dawson, BNL

SD, D. Fontes, S. Homiller, and M. Sullivan, 2205.01561

SCALE DEPENDENCE FOR C_H

- C_H modifies Higgs tri-linear
- Affects Higgs coupling limits through loop contributions

• C_H scaling different than Yukawa like terms

$$rac{v^2 C_{tH}}{M^2} \sim rac{\cos(eta-lpha)\eta_t m_t}{v aneta} \ rac{v^2 C_H}{M^2} \sim rac{\cos^2(eta-lpha)M^2}{v^2}$$

S. Dawson, BNL

Degrassi, Giardino, Maltoni, Pagani, <u>1607.04251</u>

HIGGS TRI-LINEAR AT DIMENSION-8

- C_H fits have dependence on scale Λ
- Fits sensitive to inclusion of CH

Dashed: I/Λ^2 Solid: I/Λ^4

BOTTOM LINE ON DIMENSION-8 AND 2HDM

- Dimension-8 terms are important in matching SMEFT to type-I 2H2m
- This is for a well-understood physics reason (VVh₁₂₅ first arises at dimension-8)

S. Dawson, BNL

CASE STUDY T VECTOR-LIKE QUARK

• Top vector-like quark T (SM top is t)

 $V = -\lambda_t \overline{q}_L \tilde{H} t_R - \lambda_T \overline{q}_L \tilde{H} T_R - M \overline{T}_L T_R + hc$

- Integrate out T keeping terms to O(I/M⁴)
- At dimension-6 new tth interaction

SD, S. Homiller, M. Sullivan, 2110.06929

DIM-8 IN TVLQ

• Very small effects from dim-8

SD, S. Homiller, M. Sullivan, 2110.06929

LAST EXAMPLE: HIGGS SINGLET MODEL WITHOUT Z₂

$$V(\phi, S) = V_{SM}(\phi) + V_{\phi S}(\phi, S) + V_S(S)$$
$$V_{\phi S}(\phi, S) = \kappa_S(\phi^{\dagger}\phi)S + \lambda_S(\phi^{\dagger}\phi)S^2$$
$$V_S(S) = \frac{M_S^2}{2}S^2 + \kappa_{S^3}S^3 + \kappa_{S^4}S^4$$

- Models without Z_2 symmetry motived by desire to explain electroweak baryogenesis
- (They typically prefer negative a_1 , b_3 and lighter H)
- 2 neutral Higgs particles
- Parameters limited by theoretical considerations (unitarity, vacuum stability)
- Integrate out heavy scalar and match to SMEFT

AT DIMENSION-6, SINGLET MATCHING ONLY GENERATES ON 2 COEFFICIENTS

 C_H modifies Higgs tri-linear and is poorly constrained

- $C_{H_{\square}}$ is global scaling factor
- Dimensionb-6 fits don't use data effectively (No kinematic information)

Interpret fit results in terms of model parameters Information from RGE running of coefficients from Λ to M_Z

S. Dawson, BNL

AT DIMENSION-8 DEPENDENCE ON MORE COMBINATIONS OF OPERATORS

- Trade off between dimension-6 (where C_H limited from poorly constrained hh measurements) and dimension-8 where Higgs measurements contribute in different ways
- Fit includes Higgs data, di-boson, EWPO

 $k_{\rm S}$ is portal term SH $\rm H^{+}$

Ellis, Mimasu, Zampedri, 2304.06663

CONCLUSIONS

- Lots of theoretical work on impact of dimension-8 operators!
- In specific matchings to UV models, goal is to understand underlying reasons why dimension-8 is or is not important
 - No general statement yet
- Important to present data in a manner such that theorists can continue doing dimension-8 fits
 - Doing fits using dimension-6 operators to $1/\Lambda^2$ and $1/\Lambda^4$ is useful

Stay tuned