Precision SMEFT with geoSMEFT

Adam Martin
(amarti41@nd.edu)

庄UNIVERSITYOF
(1) NOTRE DAME

FNAL, Sept 5, 2023

Looking for heavy new physics

Looking for heavy new physics

In SMEFT framework

$$
|A|^{2}=\left|A_{S M}\right|^{2}+\frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{6}\right)}{\Lambda^{2}}+\frac{1}{\Lambda^{4}}(\underbrace{\left.A_{6}\right|^{2}+2 \operatorname{Re}\left(A_{S M}^{*} A_{8}\right)}_{\begin{array}{c}
\text { L } \\
\text { interference piece, } \\
\text { usually largest effect. } \\
\text { State of the art } \\
\text { SMEFT }
\end{array}})+\cdots
$$

Dual expansion: gotta match dimensions, so numerator ~ powers of

$$
v, \partial_{\mu} \sim E
$$

At high energy $\left(\frac{E}{\Lambda}\right)^{n}>\left(\frac{v}{\Lambda}\right)^{n}$: main advantage of SMEFT at LHC

In SMEFT framework

$$
|A|^{2}=\left|A_{S M}\right|^{2}+\frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{6}\right)}{\Lambda^{2}}+\frac{1}{\Lambda^{4}}(\underbrace{\left.A_{6}\right|^{2}+2 \operatorname{Re}\left(A_{S M}^{*} A_{8}\right)}_{\begin{array}{c}
\downarrow \\
\text { interference piece, } \\
\text { usually largest effect. } \\
\text { State of the art } \\
\text { SMEFT }
\end{array}})+\cdots
$$

Dual expansion: gotta match dimensions, so numerator ~ powers of

At
 But, larger expansion parameter = more sensitive to higher orders!

SMEFT as a series expansion

- Since the SMEFT is a series expansion in I / Λ, let's recall some facts about series expansions with an elementary example.

SMEFT as a series expansion

- Since the SMEFT is a series expansion in I / Λ, let's recall some facts about series expansions with an elementary example.

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!
SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $O(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!
 SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$

EFT purist perspective: no, NOT consistent

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$

EFT realist perspective: can be okay if nothing else, but lots of pitfalls

- $|\operatorname{dim}-6|^{2}$ is positive definite, total $\mathcal{O}\left(1 / \Lambda^{4}\right)$ need not be
- $|\operatorname{dim}-6|^{2}$ limited to $\operatorname{dim}-6$ operators...
limited structure, some already bounded, small in some UV setups

Can lead to wildly inaccurate estimates of $\mathcal{O}\left(1 / \Lambda^{4}\right) \ldots$ Especially dangerous if $|\operatorname{dim}-6|^{2}>S M \times(\operatorname{dim}-6)!!$

geoSMEFT-ist perspective

geoSMEFT = re-organization of SMEFT that makes many key processes (for LHC SMEFT global fit) calculable $\mathcal{O}\left(1 / \Lambda^{4}\right)$ without needing 1000 operators

Calculate away, forming a library of process to use as a laboratory to study 'truncation error'.

geoSMEFT-ist perspective

geoSMEFT = re-organization of SMEFT that makes many key processes (for LHC SMEFT global fit) calculable $\mathcal{O}\left(1 / \Lambda^{4}\right)$ without needing 1000 operators

Calculate away, forming a library of process to use as a laboratory to study 'truncation error'.

geoSMEFT:

Generic ops have the form $D^{a} H^{b} \bar{\psi}^{c} \psi^{d} F^{x}$
While total \# grows exponentially with mass dimension, \# operators that can contribute to 2 -, 3- particle vertices stays small, nearly constant
1.) can't have too many non-Higgs fields

$$
\begin{array}{rc}
F^{2} \psi \psi^{\dagger} D & \psi^{4} \phi^{2} \\
\psi^{4} D^{2} & F \psi^{4} \\
F \psi^{2} \phi D^{2} & F^{3} \phi^{2}
\end{array}
$$

2.) can be smart about where to put derivatives (IBP, EOM)

$$
\mathcal{O}\left(D^{4} H^{4}\right): \quad\left(\square H^{\dagger} H\right)\left(\square H^{\dagger} H\right) \quad\left(D H^{\dagger}\right)(D H)\left(D H^{\dagger}\right)(D H)
$$

geoSMEFT:

Generic ops have the form $D^{a} H^{b} \bar{\psi}^{c} \psi^{d} F^{x}$
While total \# grows exponentially with mass dimension, \# operators that can contribute to 2 -, 3- particle vertices stays small, nearly constant
3.) kinematics for 2-,3-body interactions is trivial

$$
\text { e.g. } \begin{array}{rlr}
D_{\mu} H & \left(D^{\mu} \bar{\psi}\right) \psi & p_{1} \xrightarrow{\bullet} \cdot \bar{p}_{2} \\
\sim\left(p_{H} \cdot p_{\bar{\psi}}\right) H \bar{\psi} \psi & & p_{H}+p_{\bar{\psi}}+p_{\psi}=0
\end{array}
$$

Just changes coefficient of $H \bar{\psi} \psi$: not a new operator structure

geoSMEFT: Allowed 2, 3-pt structures:

[+ versions with G^{A}]

$$
\begin{gathered}
h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\mu} \phi\right)^{J}, \quad g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu} \\
k_{I J}^{A}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\nu} \phi\right)^{J} \mathcal{W}_{A}^{\mu \nu}, \quad f_{A B C}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \nu \rho} \mathcal{W}_{\rho}^{C, \mu}, \\
Y(\phi) \bar{\psi}_{1} \psi_{2}, \quad L_{I, A}(\phi) \bar{\psi}_{1} \gamma^{\mu} \tau_{A} \psi_{2}\left(D_{\mu} \phi\right)^{I}, \quad d_{A}(\phi) \bar{\psi}_{1} \sigma^{\mu \nu} \psi_{2} \mathcal{W}_{\mu \nu}^{A},
\end{gathered}
$$

Can't have derivatives in them, so only thing left is $H^{\dagger} H / \Lambda^{2} \equiv \phi^{2}$

Additionally, \# of possible EW structures for the functions saturates

Ex.) $h_{I J}$ multiplies two doublets: can either be singlet $=\delta_{I J}$, or triplet.
Can be worked out to all orders in ϕ !

geoSMEFT: Allowed 2, 3-pt structures:

[+ versions with G^{A}]

$$
\begin{gathered}
h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\mu} \phi\right)^{J}, \quad g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu} \\
k_{I J}^{A}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\nu} \phi\right)^{J} \mathcal{W}_{A}^{\mu \nu}, \quad f_{A B C}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \nu \rho} \mathcal{W}_{\rho}^{C, \mu} \\
Y(\phi) \bar{\psi}_{1} \psi_{2}, \quad L_{I, A}(\phi) \bar{\psi}_{1} \gamma^{\mu} \tau_{A} \psi_{2}\left(D_{\mu} \phi\right)^{I}, \quad d_{A}(\phi) \bar{\psi}_{1} \sigma^{\mu \nu} \psi_{2} \mathcal{W}_{\mu \nu}^{A},
\end{gathered}
$$

Can't have derivatives in them, so only thing left is $H^{\dagger} H / \Lambda^{2} \equiv \phi^{2}$
Ex.) $\quad h_{I J}=\left[1+\phi^{2} C_{H D}^{(6)}+\sum_{n=0}^{\infty}\left(\frac{\phi^{2}}{2}\right)^{n+2}\left(C_{H D}^{(8+2 n)}-C_{H, D 2}^{(8+2 n)}\right)\right] \delta_{I J}+\frac{\Gamma_{H, l}^{\prime}, \phi_{K_{A}}^{K} L_{A, L} \phi^{L}}{2}\left(\frac{C_{H D}^{(6)}}{2}+\sum_{n=0}^{\infty}\left(\frac{\phi^{2}}{2}\right)^{n+1} C_{H, D 2}^{(8+2 n)}\right)$
Dim-6 : 2 terms
Dim-8+: 2 terms

Flat 'metric' in SM, curved in SMEFT. Geometric perspective -> geoSMEFT

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now easily doable to $\mathcal{O}\left(1 / \Lambda^{4}\right)$ and only involve a few new operators
Ex.)

> Gauge \rightarrow mass eigenstates, EW inputs
$1 \rightarrow 2$ decays

Resonant $2 \rightarrow 2$

4+-pt interactions: can we go 'full metric'?

No longer true at ≥ 4-pt interactions, i.e. for 4-pt: $\mathcal{O} \sim s^{n} t^{m}$
\longrightarrow infinite set of higher derivative operators can contribute, so we can't find 'all orders' results

Need to add results at each new mass dimension 'by hand'...

But:

Can still manipulate derivatives to minimize \# operators
dim-8 effects enter $\mathcal{O}\left(1 / \Lambda^{4}\right)$ by interfering with SM, therefore need to match SM helicity/color/flavor structure

If we only care about energy enhanced effects, \# is even smaller, easy to identify for a given process via derivative/vev/ propagator counting

In practice means \# of ‘by-hand' operators is small for many relevant $\mathrm{n}=4$ processes

Redo classic SMEFT LEP1 analysis to $\mathcal{O}\left(1 / \Lambda^{4}\right)$

Using:

$$
\tilde{C}^{(6)}=C^{(6)} \frac{v^{2}}{\Lambda^{2}}, \tilde{C}^{(8)}=C^{(8)} \frac{v^{4}}{\Lambda^{4}}
$$

$$
\begin{aligned}
g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi} & =\frac{\bar{g}_{Z}}{2}\left[\left(2 s_{\theta_{Z}}^{2} Q_{\psi}-\sigma_{3}\right) \delta_{p r}+\bar{v}_{T}\left\langle L_{3,4}^{\psi, p r}\right\rangle+\sigma_{3} \bar{v}_{T}\left\langle L_{3,3}^{\psi, p r}\right\rangle\right] \\
& =\left\langle g_{\mathrm{SM}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle_{\mathcal{O}\left(v^{4} / \Lambda^{4}\right)}+\cdots
\end{aligned}
$$

SMEFT corrections in $\left\{\hat{m}_{W}, \hat{m}_{Z}, \hat{G}_{F}\right\} /\left\{\hat{\alpha}, \hat{m}_{Z}, \hat{G}_{F}\right\}$ scheme			
$\mathcal{O}\left(\frac{v^{4}}{\Lambda^{4}}\right)$	$\left\langle g_{\text {eff,pp }}^{\mathcal{Z}, u_{R}}\right\rangle$	$\left\langle g_{\text {eff, pp }}^{\mathcal{Z},,_{R}}\right\rangle$	$\left\langle g_{\text {eff, pp }}^{\mathcal{Z}, \ell_{R}}\right\rangle$
$\left\langle g_{\text {eff }}^{\mathcal{Z},}\right\rangle^{2}$	$14 / 5.5$	$-27 /-11$	$-9.1 /-3.6$
$\tilde{C}_{H B} C_{H W B}$	$-0.21 / 0.39$	$0.10 /-0.19$	$0.31 /-0.58$
$\tilde{C}_{H D}^{2}$	$0.28 /-0.026$	$-0.14 / 0.013$	$-0.42 / 0.040$
$\tilde{C}_{H D} \tilde{C}_{H \psi}^{(6)}$	$-0.83 /-0.19$	$-0.83 /-0.19$	$-0.83 /-0.19$
$\tilde{C}_{H D} \tilde{C}_{H W B}$	$0.59 /-0.19$	$-0.29 / 0.097$	$-0.88 / 0.29$
$\tilde{C}_{H D}\left\langle g_{\text {eff }}^{\mathcal{Z}, \psi}\right\rangle$	$4.0 / 0.50$	$4.0 / 0.50$	$4.0 / 0.50$
$\left(\tilde{C}_{H \psi}^{(6)}\right)^{2}$	$0.62 / 1.4$	$-1.2 /-2.8$	$-0.42 /-0.93$
$\tilde{C}_{H W B} \tilde{C}_{H \psi}^{(6)}$	$-0.69 / 0.58$	$-0.69 / 0.58$	$-0.69 / 0.58$
$\tilde{C}_{H \psi}^{(6)}\left\langle g_{\text {eff }}^{\mathcal{Z}, \psi}\right\rangle$	$-6.7 /-5.8$	$13 / 12$	$4.5 / 3.9$
$\tilde{C}_{H W B}\left\langle g_{\text {eff }}^{\mathcal{Z} \psi}\right\rangle$	$3.7 / 0.26$	$3.7 / 0.26$	$3.7 / 0.26$
$\tilde{C}_{H W} C_{H W B}$	$-0.21 / 0.39$	$0.10 /-0.19$	$0.31 /-0.58$
$\tilde{C}_{H D}^{(8)}$	$-0.014 / 0.026$	$0.0069 /-0.013$	$0.021 /-0.040$
$\tilde{C}_{H D}^{(8)}$	$-0.21 / 0.026$	$0.10 /-0.013$	$0.31 /-0.040$
$\tilde{C}_{H \psi}^{(8)}$	$0.19 / 0.19$	$0.19 / 0.19$	$0.19 / 0.19$

Redo classic SMEFT LEP1 analysis to $\mathcal{O}\left(1 / \Lambda^{4}\right)$

Using:

$$
\tilde{C}^{(6)}=C^{(6)} \frac{v^{2}}{\Lambda^{2}}, \tilde{C}^{(8)}=C^{(8)} \frac{v^{4}}{\Lambda^{4}}
$$

Lowest order.

Excludes 4-fermi terms, dipole operators.

$$
\begin{aligned}
g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi} & =\frac{\bar{g}_{Z}}{2}\left[\left(2 s_{\theta_{Z}}^{2} Q_{\psi}-\sigma_{3}\right) \delta_{p r}+\bar{v}_{T}\left\langle L_{3,4}^{\psi, p r}\right\rangle+\sigma_{3} \bar{v}_{T}\left\langle L_{3,3}^{\psi, p r}\right\rangle\right] \\
& =\left\langle g_{\mathrm{SM}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle \mathcal{O}\left(v^{2} / \Lambda^{2}\right)+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle \mathcal{O}\left(v^{4} / \Lambda^{4}\right)+\cdots
\end{aligned}
$$

SMEFT corrections in $\left\{\hat{m}_{W}, \hat{m}_{Z}, \hat{G}_{F}\right\} /\left\{\hat{\alpha}, \hat{m}_{Z}, \hat{G}_{F}\right\}$ scheme			
$\mathcal{O}\left(\frac{v^{4}}{\Lambda^{4}}\right)$	$\left\langle g_{\text {eff,pp }}^{\mathcal{Z}, u_{R}}\right\rangle$	$\left\langle g_{\text {eff, pp }}^{\mathcal{Z},,_{R}}\right\rangle$	$\left\langle g_{\text {eff, pp }}^{\mathcal{Z}, \ell_{R}}\right\rangle$
$\left\langle g_{\text {eff }}^{\mathcal{Z},}\right\rangle^{2}$	$14 / 5.5$	$-27 /-11$	$-9.1 /-3.6$
$\tilde{C}_{H B} C_{H W B}$	$-0.21 / 0.39$	$0.10 /-0.19$	$0.31 /-0.58$
$\tilde{C}_{H D}^{2}$	$0.28 /-0.026$	$-0.14 / 0.013$	$-0.42 / 0.040$
$\tilde{C}_{H D} \tilde{C}_{H \psi}^{(6)}$	$-0.83 /-0.19$	$-0.83 /-0.19$	$-0.83 /-0.19$
$\tilde{C}_{H D} \tilde{C}_{H W B}$	$0.59 /-0.19$	$-0.29 / 0.097$	$-0.88 / 0.29$
$\tilde{C}_{H D}\left\langle g_{\text {eff }}^{\mathcal{Z}, \psi}\right\rangle$	$4.0 / 0.50$	$4.0 / 0.50$	$4.0 / 0.50$
$\left(\tilde{C}_{H \psi}^{(6)}\right)^{2}$	$0.62 / 1.4$	$-1.2 /-2.8$	$-0.42 /-0.93$
$\tilde{C}_{H W B} \tilde{C}_{H \psi}^{(6)}$	$-0.69 / 0.58$	$-0.69 / 0.58$	$-0.69 / 0.58$
$\tilde{C}_{H \psi}^{(6)}\left\langle g_{\text {eff }}^{\mathcal{Z}, \psi}\right\rangle$	$-6.7 /-5.8$	$13 / 12$	$4.5 / 3.9$
$\tilde{C}_{H W B}\left\langle g_{\text {eff }}^{\mathcal{Z} \psi}\right\rangle$	$3.7 / 0.26$	$3.7 / 0.26$	$3.7 / 0.26$
$\tilde{C}_{H W} C_{H W B}$	$-0.21 / 0.39$	$0.10 /-0.19$	$0.31 /-0.58$
$\tilde{C}_{H D}^{(8)}$	$-0.014 / 0.026$	$0.0069 /-0.013$	$0.021 /-0.040$
$\tilde{C}_{H D}^{(8)}$	$-0.21 / 0.026$	$0.10 /-0.013$	$0.31 /-0.040$
$\tilde{C}_{H \psi}^{(8)}$	$0.19 / 0.19$	$0.19 / 0.19$	$0.19 / 0.19$

Redo classic SMEFT LEP1 analysis to $\mathcal{O}\left(1 / \Lambda^{4}\right)$

Ex.) 2D projections: Zero all dimension-6 operators except two but leave all dimension- 8 on with coefficients +1 . Fix Λ, then compare χ^{2} ellipses with and without dimension- 8 terms

Truncation error: Combining SM loops with $\mathcal{O}\left(1 / \Lambda^{4}\right)$

Can combine $\mathcal{O}\left(1 / \Lambda^{4}\right)$ with $\mathcal{O}\left(1 / \Lambda^{2}\right) \times$ SM loop. Worked out for $g g \rightarrow h, h \rightarrow \gamma \gamma=$ key processes for SMEFT global fit.

$$
\begin{aligned}
& 1 / \Lambda^{2} \quad \text { \#s are SM inputs, pdf factors, constants } \\
& \text { (all known analytically) } \\
& \frac{\sigma_{\text {SMEFT }}^{\hat{\alpha}}(\mathcal{G G} \rightarrow h)}{\hat{\sigma}_{\mathrm{SM}, m_{t} \rightarrow \infty}(\mathcal{G G} \rightarrow h)} \simeq 1+289 \tilde{C}_{H G}^{(6)} \\
& \checkmark 1 / \Lambda^{4} \\
& +289 \tilde{C}_{H G}^{(6)}\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+4.68 \times 10^{4}\left(\tilde{C}_{H G}^{(6)}\right)^{2}+289 \tilde{C}_{H G}^{(8)} \\
& +0.85\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+369 \tilde{C}_{H G}^{(6)}-0.91 \tilde{C}_{u H}^{(6)}-7.26 \operatorname{Re} \tilde{C}_{u G}^{(6)} \\
& \mathrm{lOOP} \times 1 / \Lambda^{2} \rightarrow-0.60 \delta G_{F}^{(6)}-4.42 \operatorname{Re} \tilde{C}_{u G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)-0.126 \operatorname{Re} \tilde{C}_{d G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right) \\
& -0.057 \operatorname{Re} \tilde{C}_{d G}^{(6)}+2.06 \tilde{C}_{d H}^{(6)} .
\end{aligned}
$$

[NNPDF3.0, w/ $\mu=\mu_{F}=m_{h}$, BFM, \hat{m}_{W} scheme]
[2107.07470 Corbett, AM, Trott] [2305.05879 AM, Trott]

Truncation error: Combining SM loops with $\mathcal{O}\left(1 / \Lambda^{4}\right)$

$$
\begin{aligned}
\frac{\Gamma_{S M E F T}^{\hat{m}_{W}}}{\Gamma_{\mathrm{SM}}^{\hat{m}_{W}}} & \simeq 1-788 f_{1}^{\hat{m}_{W}} \\
& +394^{2}\left(f_{1}^{\hat{m}_{W}}\right)^{2}-351\left(\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}\right) f_{3}^{\hat{m}_{W}}+2228 \delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}}, \\
& +979 \tilde{C}_{H D}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.80 \tilde{C}_{H W}^{(6)}-1.02 \tilde{C}_{H W B}^{(6)}\right)-788\left[\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right) f_{1}^{\hat{m}_{W}}+f_{2}^{\hat{m}_{W}}\right], \\
& +2283 \tilde{C}_{H W B}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.66 \tilde{C}_{H W}^{(6)}-0.88 \tilde{C}_{H W B}^{(6)}\right)-1224\left(f_{1}^{\hat{m}_{W}}\right)^{2}, \\
& -117 \tilde{C}_{H B}^{(6)}-23 \tilde{C}_{H W}^{(6)}+\left[51+2 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{H W B}^{(6)}+\left[-0.55+3.6 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{W}^{(6)} \\
& +\left[27-28 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re}_{u B}^{(6)}+5.5 \operatorname{Re} \tilde{\mathrm{C}}_{u H}^{(6)}+2 \tilde{\mathrm{C}}_{\mathrm{H} \square}^{(6)}-\frac{\tilde{\mathrm{C}}_{\mathrm{HD}}^{(6)}}{2}, \\
& -3.2 \tilde{C}_{H D}^{(6)}-7.5 \tilde{C}_{H W B}^{(6)}-3 \sqrt{2} \delta G_{F}^{(6)} .
\end{aligned}
$$

$\delta G_{F}^{(6)}=\frac{1}{\sqrt{2}}\left(\underset{e e}{\tilde{C}_{H l}^{(3)}}+\underset{\mu \mu}{\tilde{C}_{H l}^{(3)}}-\frac{1}{2}\left(\tilde{C}_{\mu e e \mu}^{\prime l}+\underset{e \mu \mu e}{l l}\right)\right.$,
$f_{1}^{\hat{m}_{W}}=\left[\tilde{C}_{H B}^{(6)}+0.29 \tilde{C}_{H W}^{(6)}-0.54 \tilde{C}_{H W B}^{(6)}\right]$,
$f_{2}^{\hat{m}_{W}}=\left[\tilde{C}_{H B}^{(8)}+0.29\left(\tilde{C}_{H W}^{(8)}+\tilde{C}_{H W, 2}^{(8)}\right)-0.54 \tilde{C}_{H W B}^{(8)}\right]$,
$f_{3}^{\hat{m}_{W}}=\left[\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}-0.66 \tilde{C}_{H W B}^{(6)}\right]$,

Combined result informs on how assumptions about coefficients affect uncertainty

Truncation error: Combining SM loops with $\mathcal{O}\left(1 / \Lambda^{4}\right)$

> Coefficient choice: i.e. $C_{G H}^{(6)}$ vs. $g_{3}^{2} C_{G H}^{(6)}$ intertwines loop and SMEFT expansions!

$$
\begin{aligned}
\frac{\Gamma_{S M E F T}^{\hat{m}_{W}}}{\Gamma_{\mathrm{SM}}^{\hat{\hat{m}_{W}}}} & \simeq 1-788 f_{1}^{\hat{m}_{W}}, \\
& +394^{2}\left(f_{1}^{\hat{m}_{W}}\right)^{2}-351\left(\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}\right) f_{3}^{\hat{m}_{W}}+2228 \delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}}, \\
& +979 \tilde{C}_{H D}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.80 \tilde{C}_{H W}^{(6)}-1.02 \tilde{C}_{H W B}^{(6)}\right)-788\left[\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right) f_{1}^{\hat{m}_{W}}+f_{2}^{\hat{m} W}\right], \\
& +2283 \tilde{C}_{H W B}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.66 \tilde{C}_{H W}^{(6)}-0.88 \tilde{C}_{H W B}^{(6)}\right)-1224\left(f_{1}^{\hat{m}_{W}}\right)^{2}, \\
& -117 \tilde{C}_{H B}^{(6)}-23 \tilde{C}_{H W}^{(6)}+\left[51+2 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{H W B}^{(6)}+\left[-0.55+3.6 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{W}^{(6)}, \\
& +\left[27-28 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re}_{u B}^{(6)}+5.5 \operatorname{Re} \tilde{\mathrm{C}}_{u H}^{(6)}+2 \tilde{\mathrm{C}}_{\mathrm{H} \mathrm{\square}}^{(6)}-\frac{\tilde{\mathrm{C}}_{\mathrm{HD}}^{(6)}}{2}, \\
& -3.2 \tilde{C}_{H D}^{(6)}-7.5 \tilde{C}_{H W B}^{(6)}-3 \sqrt{2} \delta G_{F}^{(6)} .
\end{aligned}
$$

$\delta G_{F}^{(6)}=\frac{1}{\sqrt{2}}\left(\underset{C_{H l}}{\tilde{C l}_{e e}^{(3)}}+\underset{\mu \mu}{\tilde{C}_{H l}^{(3)}}-\frac{1}{2}\left(\tilde{C}_{\mu e e \mu}^{\prime}{ }_{\mu l}+\underset{\left.C^{\prime}{ }_{e \mu \mu e}^{l}\right)}{\tilde{C}^{\prime}}\right)\right.$,
$f_{1}^{\hat{m}_{W}}=\left[\tilde{C}_{H B}^{(6)}+0.29 \tilde{C}_{H W}^{(6)}-0.54 \tilde{C}_{H W B}^{(6)}\right]$,
$f_{2}^{\hat{m} W}=\left[\tilde{C}_{H B}^{(8)}+0.29\left(\tilde{C}_{H W}^{(8)}+\tilde{C}_{H W, 2}^{(8)}\right)-0.54 \tilde{C}_{H W B}^{(8)}\right]$,
$f_{3}^{\hat{m} W}=\left[\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}-0.66 \tilde{C}_{H W B}^{(6)}\right]$,

Combined result informs on how assumptions about coefficients affect uncertainty

Sneaky large dimension-8 effects: $h \rightarrow \gamma \gamma$

$h \rightarrow \gamma \gamma$ affected by $H^{\dagger} H F^{2}$ at dim-6, $\left(H^{\dagger} H\right)^{2} F^{2}$ at dim-8.
But: following classification of [Arzt'93, Craig et al '20] (weakly coupled UV completion), the former are 'loop-level', while latter 'tree-level',

Ex.) pick random values, study impact

$$
\begin{aligned}
& \text { loop }=\mathcal{O}(0.01) \\
& \text { tree }=\mathcal{O}(1)
\end{aligned}
$$

Large effect from dim-8, as coefficient hierarchy compensates for extra powers of v^{2} / Λ^{2}
[explicit UV example = kinetically mixed U(1): 2007.00565 Hays, Helset, AM, Trott]

Sneaky large dimension-8 effects: VH

Sneaky large dimension-8 effects: VH

But, $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ etc. are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\{\mu, \nu\}} H$ are not

complying with those constraints, large \hat{s} is a window into dim-8

Sneaky large dimension-8 effects: diboson

$\gamma W^{ \pm}$

$\epsilon_{\gamma} \epsilon_{W}$	SM	dim-6 C_{W}
++	$\frac{v^{2}}{s}$	$\frac{s}{\Lambda^{2}}$
+-	1	0
+0	$\frac{v}{\sqrt{s}}$	$\frac{v \sqrt{s}}{\Lambda^{2}}$

with dim-6 alone, largest energy enhancement (to $\mathcal{O}\left(1 / \Lambda^{4}\right)$) comes from from

$$
\left|\operatorname{dim}-6 C_{W}\right|^{2} \sim \frac{s^{2}}{\Lambda^{4}}
$$

Sneaky large dimension-8 effects: diboson

$\gamma W^{ \pm}$

$\epsilon_{\gamma} \epsilon_{W}$	SM	dim-6 C_{W}	dim-8 contact
++	$\frac{v^{2}}{s}$	$\frac{s}{\Lambda^{2}}$	$\frac{s^{2}}{\Lambda^{4}}$
+-	1	0	$\frac{s^{2}}{\Lambda^{4}}$
+0	$\frac{v}{\sqrt{s}}$	$\frac{v \sqrt{s}}{\Lambda^{2}}$	$\frac{v s^{3 / 2}}{\Lambda^{4}}$

See also Degrande 2303.10493

But: dim 8
$\left(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{l} \stackrel{D}{D}_{\iota} Q\right) W_{\mu \rho}^{I} B_{\rho \nu}$
can interfere with dominant SM polarization
$S M \times \operatorname{dim} \mathbf{- 8} \sim \frac{s^{2}}{\Lambda^{4}}$
\therefore tails tell you about the sum, not just C_{W}

Motivates polarization studies, 'taggers'

So where does this leave us?

- geoSMEFT: approach where 2 and 3 particle vertices sensitive to a minimal \# of operators, \# ~ constant with mass dimension. Physics with 2-, 3-particle vertices doable to any order in v / Λ (tree level)
- Can study select processes to $1 / \Lambda^{4}$, use them to form guidelines for how to include truncation error more generally in SMEFT studies

Several key processes for global fits already known to $1 / \Lambda^{4}$

$$
\text { Resonant } 2 \rightarrow 2: g g \rightarrow h \rightarrow \gamma \gamma, p p \rightarrow \mathrm{Z} \rightarrow \bar{f} f
$$

Drell Yan, $p p \rightarrow V h$; diboson in progress
ready for use/study
[ex. 2109.05595 AM, Trott]

So where does this leave us?

Expanding the list of processes:

- geoSMEFT pieces have same kinematics at dim 6 and 8
\therefore can capture many effects by reweighing:

In MG already via SMEFTsim/ $\sigma(S M \times \operatorname{dim}-6)$

$$
\frac{\text { couplings at } 1 / \Lambda^{4}}{\text { couplings at } 1 / \Lambda^{2}}
$$ analytically

- Only need to add contact terms/novel kinematics

Thank you!

Extras

\# operators small and remains ~fixed for increasing mass dimension

Mass Dimension

Field space connection	6	8	10	12	14
$k_{I J A}(\phi)\left(D^{\mu} \phi\right)^{I}\left(D^{\nu} \phi\right)^{J} \mathcal{W}_{\mu \nu}^{A}$	0	3	4	4	4
$f_{A B C}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \nu \rho} \mathcal{W}_{\rho}^{C, \mu}$	1	2	2	2	2
$Y_{p r}^{u}(\phi) \bar{Q} u+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{d}(\phi) \bar{Q} d+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{e}(\phi) \bar{L} e+$ h.c.	$2 N_{f}^{2}$				
$d_{A}^{e, p r}(\phi) \bar{L} \sigma_{\mu \nu} e \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{u, p r}(\phi) \bar{Q} \sigma_{\mu \nu} u \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{d, p r}(\phi) \bar{Q} \sigma_{\mu \nu} d \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$L_{p r, A}^{\psi_{R}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, R} \gamma_{\mu} \sigma_{A} \psi_{r, R}\right)$	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}
$L_{p r, A}^{\psi_{L}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, L} \gamma_{\mu} \sigma_{A} \psi_{r, L}\right)$	$2 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$

Example: $L_{I, A}(\phi) \bar{\psi}_{1} \gamma^{\mu} \tau_{A} \psi_{2}\left(D_{\mu} \phi\right)^{I}$

contributing operators

$$
\begin{aligned}
& \mathcal{Q}_{\mathcal{Q}_{H}^{1,(6+2 n)}}^{p r}=\left(H^{\dagger} H\right)^{n} H^{\dagger} \overleftrightarrow{D}^{\mu} H \bar{\psi}_{p} \gamma_{\mu} \psi_{r}, \\
& \mathcal{Q}_{H \psi}^{3,(6+2 n)}=\left(H^{\dagger} H\right)^{n} H^{\dagger} \overleftrightarrow{i}{ }_{a}^{\mu} H \bar{\psi}_{p} \gamma_{\mu} \sigma_{a} \psi_{r},
\end{aligned}
$$

compact form for connection:

$$
\begin{aligned}
L_{J, A}^{\psi, p r} & =-\left(\phi \gamma_{4}\right)_{J} \delta_{A 4} \sum_{n=0}^{\infty} C_{\underset{p r}{1,(6+2 n)}}^{C_{p r}}\left(\frac{\phi^{2}}{2}\right)^{n}-\left(\phi \gamma_{A}\right)_{J}\left(1-\delta_{A 4}\right) \sum_{n=0}^{\infty} C_{\underset{p r}{ }}^{3,(6+2 n)}\left(\frac{\phi^{2}}{2}\right)^{n} \\
& +\frac{1}{2}\left(\phi \gamma_{4}\right)_{J}\left(1-\delta_{A 4}\right)\left(\phi_{K} \Gamma_{A, L}^{K} \phi^{L}\right) \sum_{n=0}^{\infty} C_{\underset{p r}{2}}^{2,(8+2 n)}\left(\frac{\phi^{2}}{2}\right)^{n} \\
& +\frac{\epsilon_{B C}^{A}}{2}\left(\phi \gamma_{B}\right)_{J}\left(\phi_{K} \Gamma_{C, L}^{K} \phi^{L}\right) \sum_{n=0}^{\infty} C_{\substack{H \psi_{L} \\
\epsilon,(8+2 n)}}^{C_{p r}}\left(\frac{\phi^{2}}{2}\right)^{n}
\end{aligned}
$$

What can we do with this? 'EW inputs'

Bosonic kinetic terms used to define the gauge boson mass basis

$$
W_{\mu}^{3}, B_{\mu} \longrightarrow A_{\mu}, Z_{\mu}
$$

\& couplings to mass eigenstates define: $e, g_{Z}, \sin ^{2} \theta_{Z}$ $D_{\mu} \psi=\left[\partial_{\mu}+i \bar{g}_{3} \mathcal{G}_{\neq}^{\mu} T^{\mathfrak{g}}+i \frac{\bar{g}_{2}}{\sqrt{2}}\left(\mathcal{W}^{+} T^{+}+\mathcal{W}^{-} T^{-}\right)+i \bar{g}_{Z}\left(T_{3}-s_{\theta_{Z}}^{2} Q_{\psi}\right) \mathcal{Z}^{\mu}+i Q_{\psi} \bar{e} \mathcal{A}^{\mu}\right] \psi$.

SM: $e, g_{Z}, \sin ^{2} \theta_{Z}=$ functions of g, g^{\prime} alone SMEFT: relation altered by operators that feed into kinetic terms:

$$
\text { ex.) } C_{H W}^{(6)} H^{\dagger} H W_{\mu \nu}^{A} W^{A, \mu \nu}
$$

$\therefore e, g_{Z}, \sin ^{2} \theta_{Z}=$ function of $g, g^{\prime}, C_{i}^{(n)}$ coefficients
'Universal effect', since all occurrences of $e, g_{Z}, \sin ^{2} \theta_{Z}$ now carry coefficient dependence

What can we do with this? 'EW inputs'

With geoSMEFT setup, can set EW inputs to all orders:

$$
e, g_{Z}, \sin ^{2} \theta_{Z} \longrightarrow \text { functions of } g, g^{\prime}, h_{I J}, g_{A B}
$$

$$
\left.\bar{m}_{W}^{2}=\frac{\bar{g}_{2}^{2}}{4}{\sqrt{h_{11}}}^{2} \bar{v}_{T}^{2}, \quad \bar{m}_{Z}^{2}=\frac{\bar{g}_{Z}^{2}}{4}{\sqrt{h_{33}}}^{2} \bar{v}_{T}^{2} \quad \bar{m}_{A}^{2}=0 .\right\} \quad \text { masses }
$$

$$
\begin{aligned}
& \bar{g}_{2}=g_{2} \sqrt{g}^{11}=g_{2} \sqrt{g}^{22} \text {, } \\
& \left.\begin{array}{c}
\bar{g}_{Z}=\frac{g_{2}}{c_{\bar{\theta}}^{2}}\left(c_{\bar{\theta}} \sqrt{\bar{g}^{33}}-s_{\bar{\theta}} \sqrt{g^{34}}\right)=\frac{g_{1}}{s_{\theta_{z}}^{2}}\left(s_{\bar{\theta}} \sqrt{g^{44}}-c_{\bar{\theta}} \sqrt{g^{34}}\right), \\
\bar{e}=g_{2}\left(s_{\bar{\sigma}} \sqrt{g^{3}}+c_{\bar{\theta}} \sqrt{g^{34}}\right)=g_{1}\left(c_{\bar{\theta}} \sqrt{g^{4}}+s_{\bar{\theta}} \sqrt{g^{34}}\right),
\end{array}\right\} \text { couplings }
\end{aligned}
$$

Ex. $p p \rightarrow \ell^{+} \ell^{-}, \ell^{ \pm} \nu$ to $\mathcal{O}\left(1 / \Lambda^{4}\right)$
[Kim, AM 2203.11976]
new at 4-pt, $\mathcal{O}(10)$

SM
 operators at $1 / \Lambda^{4}$

$$
p p \rightarrow \ell^{+} \ell^{-}
$$

$p p \rightarrow \ell^{ \pm} \nu$

$$
\Lambda=5 \mathrm{TeV}, 2 \mathrm{TeV} \leq \sqrt{\hat{s}} \leq 3 \mathrm{TeV}
$$

[see also Boughezal et al 2106.05337, 22037.01703, Allwicher et al 2207.10714]

New kinematics from dimension-8

SM

3pt - in geoSMEFT

new at $4-\rho t, \mathcal{O}(10)$ operators at $1 / \Lambda^{4}$
new spherical harmonics in angular distribution of Drell Yan show up at dimension-8 [2003.1615 Alioli et al]

$$
\begin{aligned}
\mathcal{O}_{8, e d \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{d} \gamma^{\mu} \overleftrightarrow{D}^{\nu} d\right), \\
\mathcal{O}_{8, e u \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{u} \gamma^{\mu} \overleftrightarrow{D}^{\nu} u\right), \\
\mathcal{O}_{8, l d \partial 2} & =\left(\bar{l} \gamma_{\mu} \overleftrightarrow{D}_{\nu} l\right)\left(\bar{d} \gamma^{\mu} \overleftrightarrow{D}^{\nu} d\right), \\
\mathcal{O}_{8, l u \partial 2} & =\left(\bar{l} \gamma_{\mu} \overleftrightarrow{D}_{\nu} l\right)\left(\bar{u} \gamma^{\mu} \overleftrightarrow{D}^{\nu} u\right), \\
\mathcal{O}_{8, q e \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{q} \gamma^{\mu} \overleftrightarrow{D}^{\nu} q\right) .
\end{aligned}
$$

