EFT Interpretation of Three Massive Bosons Production

Sergo Jindariani, Lesya Horyn

Fermilab

Saptaparna Bhattacharya, Cole Kampa, Yulun Miao, Michael Schmitt,

Northwestern University

Qiang Li, Qilong Guo

Peking University

Garyfallia (Lisa) Paspalaki, Mia Liu

Purdue University

Philip Chang

University of Florida

SMP-VVV @ EFT workshop Fermilab

Outline

- Motivation
- Faux NLO sample generation
- Analysis overview
- EFT limit extraction
- Summary

Motivation

- Production of three massive bosons (VVV) is a rare process, observation reported in <u>CMS paper</u> and <u>ATLAS paper</u>
- VVV processes involve TGC, QGC, Higgs-gauge couplings. Deviations in these couplings can potentially lead to large excesses.

Focus on the EFT interpretation of VVV, with dim-6 and dim-8 operators

Impact of EFT

• EFT operators impact the VVV cross section in multiple ways, \mathcal{O}_w , increase the cross section on high \hat{s} . \mathcal{O}_{ll} increase the overall cross section

EFT MC Sample Generation

- LO does not provide accurate kinematic distributions at SM point compared to NLO standard sample
- Following <u>TOP</u> group, we generate faux NLO samples by performing merge and match on VVV and VVV with additional parton
- Faux NLO samples for dim-6 operators have been generated, dim-8 operators to be followed

Analysis Overview

- Semi-leptonic/hadronic decay is studied in high \hat{s} region
- Use ParticleNet W/Z tagger to tag AK8 jets with $p_T > 200 \text{GeV}$ ("fatjets")
- Channels are divided by the number and sign of leptons
 - Each channel chooses appropriate variable representing \hat{s}
 - 3-6 bins in the variable chosen
 - Each channel also defines orthogonal control region(s) to study background

Channel	Targeting	Variable of interest
0 lepton + 2/3 fatjets	WWW,WWZ,WZZ,ZZZ	H_T
1 lepton + 2 fatjets	WWW,WWZ,WZZ	$M_{l\nu JJ}(M_{VVV})$
2 Opposite-Signed Leptons(OS) + 1 fatjet	WWW,WWZ,WZZ,ZZZ	S _T
2 Same-Signed Leptons(SS) + 1 fatjet	WWW	S _{T,MET}

Example: SS+1fatjet Channel

Lample. 55 marger chan			s I		137.64fb ⁻¹
		Yield±stat.	ı ver		
 Signal Region 	$tar{t}$	28.1 ± 1.2			w z
 Dilepton triggers 	ttW	4.00 ± 0.14			Y +jets
 Exactly 2 same sign loose leptons 	ttZ	0.83 ± 0.06			
 ≥1 fatjet with medium WP 	WW	1.95 ± 0.14	-		
 No medium b-jet 	WZ	6.4 ± 0.6			
 Both leptons pass tight ID 	ZZ	0.162 ± 0.010	10 ⁻²		
• $ m_{ee} - m_Z > 20 \text{ GeV}$	Wjets	2.9 ± 1.0	500 I	1000 11500 2000	2500 3000
• $p_{T,l1} > 40 \text{GeV}$, $p_{T,l2} > 30 \text{GeV}$	DY	1.9 ± 0.4	_	Signal region	DT,MET(Gev)
• $\Delta R_{ll} > 1.2$	bkg	46.4 ± 1.7			137.64fb^{-1}
• $t\bar{t}$ Control region	VVV(SM)	10.1 ± 0.5	ents		tī tw
• Change b-veto to ≥ 1 medium b-jet	$VVV(c_W = 0.3)$	17.9 <u>±</u> 0.7	Ъ – – –		ttZ DY WZ
• Data driven $t\overline{t}$ background estimation is under development					WW ZZ W+jets W+jets ttH → data

1.4 1.2 0.8 0.6 200

400

600

1200

1000

800

 $t\bar{t}$ control region

1400

 $S_{T,MET}(\text{GeV})$

Yield in last bin

Numbers in the table are indicative

$N_{EFT} = $ Quadratic $\times c_{EFT}^2 +$ Linea	$\operatorname{ar} \times c_{EFT} + \operatorname{SM}$
---	--

Channel	Total background	SM VVV	$N_{EFT}@$ $c_W = 0.3$	<i>c_W</i> Quadratic	c_W Linear
0 lepton + 3 fatjets	10.5	0.125	40.9	452.65	0.178
0 lepton + 2 fatjets	4.8	0.175	23.2	254.36	0.578
1 lepton + 2 fatjets	1.65	0.121	13.7	150.75	0.175
2 OS Leptons + 1 fatjet: OF	0.9	0.306	10.9	117.00	0.196
2 OS Leptons + 1 fatjet: SF, no Z	13	0.820	15.8	164.7	0.493
2 OS Leptons + 1 fatjet: SF, Z	16	0.810	11.7	119.7	0.368
2 Same-Signed Leptons + 1 fatjet	0.7	0.924	8.27	79.3	0.672

• Quadratic terms dominate the sensitivity

Limits calculation

- Preliminary result with subset of syst. uncertainties
- Top panel: summarized input to Higgs combine
- Bottom panel: limits extracted from Higgs combine
- Channels sorted by channel sensitivity

Summary of c_W Limit

95% CL Expected Limits (full analysis and channel level)

NLL vs. c_W (output from combine)

Fitting Result	Wilson Coefficient	Limit @ 95% CL	Current limit in SMP
C		Dim 6 operators	
• Preliminary result with	c _W	[-0.092,0.090]	[-0.125,0.13]
subset of syst.	C _{Hq3}	[-0.18,0.15]	[-0.12,0.12]
uncertainties	C _{Hq1}	[-0.25,0.24]	[-1.8,1.6]
 Interesting limits are 	c _{Hu}	[-0.44,0.43]	[-2.0,2.0]
achieved for dim-6	C _{Hd}	[-0.56,0.56]	> [-2.0,2.0]
operators	C _{HW}	[-1.20,1.13]	[-0.78,0.6]
operators	C _{HB}	[-1.24,1.24]	[-3.79,3.80]
• f_{T0} and f_{M0} close to the current limit	C _{HWB}	[-3.8,3.6]	[-0.6,0.6]
	C _{Hl3}	[-2.7,14]*	[-0.1, 0.1]
	c_{ll1}	[-27,5.3]*	[-0.15,0.15]
	$C_{H\square}$	[-52,46]	[-3.9,4.2]
	C _{HDD}	[-89,49]	[-1.1,1.2]
		Dim 8 operators	
	Assuming f_{T0}	[-0.16,0.16]	[-0.12,0.11]
	dim-6 is $0 f_{M0}$	[-0.87,0.89]	[-0.69,0.69] *: discontinuous limits

SMP-VVV @ EFT workshop Fermilab

Summary

- The analysis is well developed. The analysis group have defined signal regions, investigated variables of interest, developed binning strategy and defined control region(s)
- Use of faux NLO dim-6 samples provides improved description of signal, dim-8 generation ongoing
- Preliminary fit results indicate strong sensitivity for dim-6 and dim-8 Wilson Coefficients

Thank you

Backup

Table of Wilson Coefficients and Current Limits

Wilson Coefficient	Current limit in SMP	Source
C _W	[-0.125,0.13]	VBS All Hadronic/Missing JER/JES and PDF uncertainties
C _{Hq3}	[-0.12,0.12]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
c_{Hq1}	[-1.8,1.6]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
C _{Hu}	[-2.0,2.0]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
C _{Hd}	> [-2.0,2.0]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
C _{HW}	[-0.78,0.6]	VBS All Hadronic/ <u>Missing JER/JES and PDF uncertainties</u>
C _{HB}	[-3.79,3.80]	Semileptonic VBS WV from analyst*
C_{HWB}	[-0.6,0.6]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
C _{Hl3}	[-0.1,0.1]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
c _{ll1}	[-0.15,0.15]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
$c_{H\square}$	[-3.9,4.2]	VBF W, 100/fb/ <u>Freeze all WC and float one at a time</u>
C _{HDD}	[-1.1,1.2]	VBS All Hadronic/ <u>Missing JER/JES and PDF uncertainties</u>
	*Analys	is in progress, obtained through private communication, 59.7/fb

NLO vs LO

Diagrams associated with the LO process

Diagrams associated with the NLO process

Merge and match

- Generate the leading order process (with its charge conjugate) with an extra jet
 - generate p p > w+ w+ w-
 - add process p p > w+ w+ w-j
- This may provide a better description of the event (used by the $t\bar{t}X$ group: <u>https://arxiv.org/pdf/2012.06872.pdf</u>)

Diagrams associated the LO +1 jet process

Merge and match

- To ensure that there is a no double counting in the matrix element and parton shower computations, we tune the values of two different parameters
 - xqcut: this is a setting in the Madgraph run_card (is a function of the momenta of the partons and their angular separation)
 - If $k_T < xqcut$, the event is not generated
 - qcut: this is a pythia setting, where pythia calculates the momenta of every final state objects

Object ID

Loose(Tight) Electron	Loose(Tight) Muon
mvaFall17V2Iso_WP90(80)	Medium POG ID
$p_T > 10 { m GeV}$	$p_T > 10 { m GeV}$
$ \eta < 2.5$,veto $1.444 < \eta < 1.566$	$ \eta < 2.4$
	pfRelIso04_all<0.25(0.15)
AK4Jet	Medium b-Jet
$p_T > 30 \text{GeV}$	$p_T > 20 \text{GeV}$
$ \eta < 3.0$	$ \eta < 2.4$
$\Delta R > 0.4$ from lepton	$\Delta R > 0.4$ from lepton
	DeepFlavB tagger medium WP
AK8Jet	Medium FatJet
$p_T > 200 { m GeV}$	AK8 jet
$ \eta < 2.4$	$65 \mathrm{GeV} < m_{sd} < 105 \mathrm{GeV}$
$\Delta R > 0.8$ from lepton	ParticleNetMD W tagger medium WP

Trigger

- All hadronic trigger (0 lepton final state)
 - HLT_AK8PFJet400_TrimMass30
 - HLT_PFHT1050
 - HLT_AK8PFJet500
 - HLT_AK8PFJet400_TrimMass3
- Single lepton trigger (1 lepton final state)
 - 2016
 - HLT_IsoMu24
 - HLT_Ele27_WPTight
 - 2017
 - HLT_IsoMu27
 - HLT_Ele35_WPTight
 - 2018
 - HLT_lsoMu24
 - HLT_Ele32_WPTight

- Dilepton trigger (2 leptons final states)
 - 2016
 - HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ
 - HLT_Mu23/8_TrkIsoVVL_Ele12/23_CaloIdL_TrackIdL _IsoVL(_DZ)
 - HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL(_DZ)
 - 2017/2018
 - HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
 - HLT_Mu23/8_TrkIsoVVL_Ele12/23_CaloIdL_TrackIdL _IsoVL_DZ
 - HLT_Mu17_TrklsoVVL_Mu8_TrklsoVVL_DZ_Mass3p
 8

Current Status of Higgs combine Calculation

- ROOT histograms store nominal yield for each background process
- Up/Down template histograms store nominal yields ±1σ for systematics (shape and norm)
- autoMCStats (threshold=0) used to incorporate MC statistical uncertainty (background processes only) – information stored in bin statistical errors of the nominal yield histograms
- VVV yields are supplied as parabola parameter histograms:
 - SM VVV
 - Quadratic coeff.
 - SM VVV + Linear coeff. + Quadratic coeff. (ensures positive values passed into combine)
- "<u>AnalyticAnomalousCoupling</u>" add-on to Higgs combine used for EFT parameterization
 - Generates a RooWorkspace
 - Combine calculation run using the "MultiDimFit" method (brute force NLL scan).
- In MultiDimFit, the profiled likelihood function is calculated at each point.
- Current implementation: freeze all Wilson coefficients to zero and float one at a time.

Software Environment: Higgs combine

- Installation most recently built and tested on August 31, 2023 on FNAL LPC.
- <u>VVV codes</u>:

https://github.com/Saptaparna/EFTAnalysis/tree/master/EFTAnalysisFitting

- <u>CMSSW</u>: v10.2.13
- <u>Higgs combine</u>: v8.1.0
- <u>AnalyticAnomalousCoupling</u>: head of master (commit eb032ba356393997ec2db1066638b2d7b22e95e5)
- <u>CombineHarvester</u>: head of master (commit 610d8ded8d1f71ed4db4d634cd9e2d7b8ae7b560)

Discontinuous limit: c_{Hl3}

 $sum(b_i) + N_{cW}(0.2)$

- The analysis correctly finds two minima at +-0.2 (cW yields are symmetric)
- cW = 0 is excluded!

Pull / Impact Plot

- Used CombineHarvester: "combineTools.py" with "Impa
- Interpretation of impact plot ι of the POI
- Impact plot looks more like wl¹³ (right plot)

