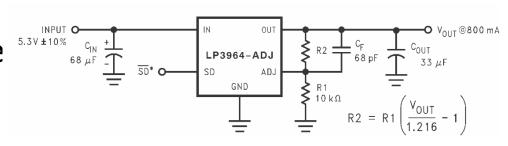
CMOS (LDO) Lifetime Testing

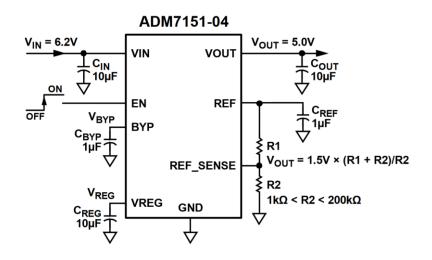
FD2-PDS Longevity qualification and Stability test Workshop

Wednesday Jun 7, 2023

Eric Raguzin, Hucheng Chen, Shanshan Gao, Wei Shi

Motivation

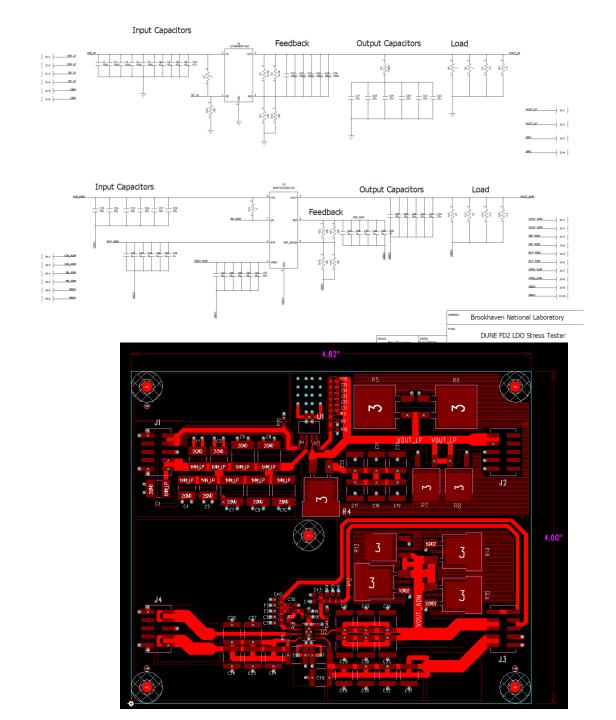

- 2 candidate LDOs identified by the FD2 PDS team to be used for cold electronics:
 - LP3964EMPX-ADJ
 - ADM7151ARDZ-04
- In order to fully understand the potential failure modes of the LDOs (due to the Hot Carrier Effect [HCE] during cryogenic use) a lifetime study be undertaken
- Accelerated aging will be induced by stressing the input voltage



Defining parameters for aging

- We look to observe parameters of the chip that will age monotonically – for the commercial ADC in SBND, it was I_{VCC}
- For LP3964, we can only monitor V_{OUT}
- For ADM7151, we will also monitor V_{BYP} and V_{REG} in addition to V_{OUT}
- We will need to observe initial aging during the exploratory phase to properly define the parameters that will constitute a failure (e.g., one of these voltages rising or falling by 1%)

Inducing Aging

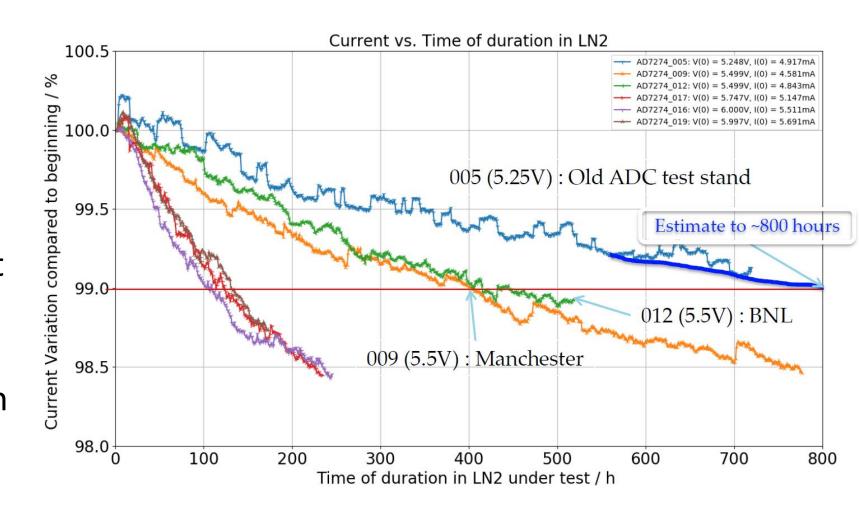

- Before testing, one has to define how much voltage stress will need to be applied
- To be prepared, we are using a Keithley 2460, capable of outputting 1A up to 100V with a 0.015% accuracy and 1 mV RMS

Parameter	Texas Instruments <u>LP3964EMP-ADJ</u>	Analog Devices ADM7151ARDZ-04	
Input Voltage Range (Datasheet)	2.5V to 7V	4.5V to 16V	
Highest voltage supply for stress test (assumed)	14V	30V	
Output Current (datasheet)	800 mA	800 mA	
Highest current supply for stress test (assumed)	1A	1A	

Test PCB

- Custom PCB designed to test both LDO candidates
- Separate ground planes so no interference
- Custom test PCB allows more capacitors in parallel for filtering and stability
 - Cold Electronics experience shows significant drop in capacitance at cryogenic temperatures
- Power resistors to sink 800 mA
- Standard connectors for input and output monitoring on board
- PCB is ordered and being fabricated

Monitoring

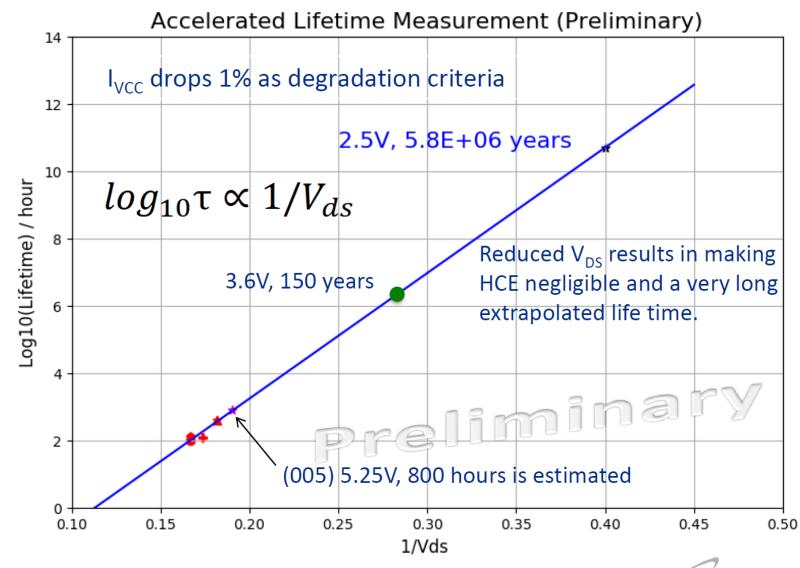


	Range ³	Frequency, etc.	24 hour ² 23 ± 1 °C	90 Day 23 ± 5 °C	1 Year 23 ± 5 °C	Temperature coefficient 0 – 18 °C, 28 - 55 °C
DC voltage						
	100.0000 mV		0.0030 + 0.0035	0.0040 + 0.0040	0.0050 + 0.0040	0.0005 + 0.0005
	1.000000 V		0.0020 + 0.0006	0.0030 + 0.0007	0.0040 + 0.0007	0.0005 + 0.0001
	10.00000 V		0.0015 + 0.0004	0.0020 + 0.0005	0.0035 + 0.0005	0.0005 + 0.0001
	100.0000 V		0.0020 + 0.0006	0.0035 + 0.0006	0.0045 + 0.0006	0.0005 + 0.0001
	300.000 V		0.0020 + 0.0020	0.0035 + 0.0030	0.0045 + 0.0030	0.0005 + 0.0003

 An <u>Agilent/Keysight 34970</u> mainframe with <u>Agilent/Keysight 34901A</u> multiplexer module is being used to sample the outputs

Next steps

- When setup is fully built and testing begins, we can start overstressing the LDOs to get an indication for how long it takes them to fail
- Example shown to the right for ADC testing with various overstressed voltages



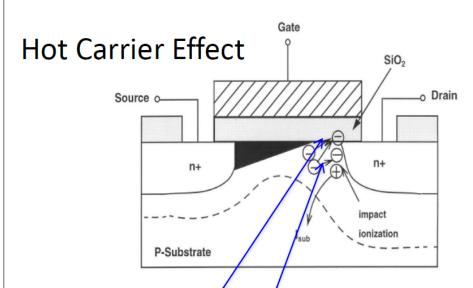
ADC Lifetime Projection

Goal

- With this data we will be able to predict the lifetime before HCE failure for each LDO for a given input voltage
- This will inform us the suitability of LDOs in long term cryogenic operation
- And inform our design (e.g. operating voltages) to ensure that HCE aging is a negligible issue SRN

Backup

CMOS Lifetime at Cryogenic Temperatures



- Most of the major failure mechanisms are strongly temperature dependent and become negligible at cryogenic temperature
 - Such as electro-migration, stress migration, time-dependent dielectric breakdown and negative-bias temperature instability
- The degradation (aging) due to channel Hot Carrier Effects (HCE)
 - The only remaining mechanism that may affect the lifetime of CMOS devices at cryogenic temperature
 - Lifetime due to HCE aging
 - A limit defined by a chosen level of monotonic degradation
 - Drain current, transconductance, threshold voltage etc.
 - The aging mechanism does not result in sudden device failure
 - The device "fails" if a chosen parameter gets out of the specified circuit design range
- Reliability and aging are entirely different concepts

Basic on HCE and ALT

- →Some hot electronics exceed the energy required to create an electron-hole pair, resulting in *impact ionization*
- → A very small fraction of hot electrons exceeds the energy required to create an *interface state* at the Si-SiO2 interface
- → Due to the generation of interface states, negative charges will accumulate causing the degradation
- → More severe at cold than at RT

Accelerated Lifetime Test

CMOS in DC operation

- → ALT at any temperature (wellestablished by foundries) transistor is placed under a severe electric field stress (large V_{DS}), to reduce the lifetime due to hot-electron degradation to a practically observable range.
- → ALT is widely used by industry
- ightarrow Lifetime is projected by empirical equation $log_{10} au \propto 1/V_{ds}$

CMOS in AC operation

→ Lifetime of digital circuits (ac operation) is extended by the inverse duty factor $4/(f_{clock}*t_{rise})$ compared to dc operation. This factor is large (>100) for deep submicron technology and clock frequency needed for TPC

A Little More Explanation of CMOS HCE Lifetime (Aging)

- Reliability and aging are entirely different
 - The Reliability is dependent on the system design, choice of components, assembly techniques, and in general, by the QA/QC in the work place.
 - M. White and J.B. Bernstein, "Microelectronics Reliability: Physics-of Failure Based Modeling and Lifetime Evaluation", JPL Publication 08-5 2/08
- HCE aging is given by the physical/chemical processes
 - It can be controlled only by the design and the operating conditions
 - It does not result in sudden failure
 - The device "fails" if a chosen parameter gets out of the specified circuit design range
 - It is uniform and reproducible
- The cold electronics for LAr TPCs should be designed for a lifetime one or more orders of magnitude longer than the required service life (e.g., > 300 years for DUNE), essentially to remain outside of the region of HCE degradation