

Channel saturation rate estimates for beam events

F. Marinho

FD2-PDS Longevity qualification and Stability test Workshop

LArSoft simulation dataset

• TDR simulation of beam events

Geometry: (top vol: full width and drift, z: 21m)

Generator: Genie ($\nu_{\mu} \& \nu_{e}$)

Waveform amplitudes

Fraction of saturated channels

• TDR simulation of beam events

Channel saturation studies

• TDR simulation of beam events

Saturated channels vs energy

<saturated channels> < 0.2% for E < 10 GeV

<saturated channels> < 0.1% for E < 10 GeV

Channel saturation studies

Expected beam event yields

3.5 (staged) years -1.1×10^{21} POT per year		Sample	Expected Events			
			$\delta_{ m CP}=0$		$\delta_{\rm CP} = -\frac{\pi}{2}$	
- 1.1 × 10	i Oi pei yeai		NO	IO	NO	IO
Sample	Expected Events	ν mode				
	NO IO	Oscillated ν_e	1155	526	1395	707
		Oscillated $\bar{\nu}_e$	19	33	14	28
$ \nu \mod e $ $ \nu_{\mu} \operatorname{Signal} $	7235 7368	Total oscillated	1174	55 <mark>9</mark>	1409	735
$\bar{\nu}$ mode		$ar{ u}$ mode				
$\bar{\nu}_{\mu}$ Signal	2656 2633	Oscillated ν_e	81	39	95	53
		Oscillated $\bar{\nu}_e$	236	492	164	396
		Total oscillated	317	531	259	449

Long-baseline neutrino oscillation physics potential of the DUNE experiment 8 The European Physical Journal C volume 80, Article number: 978 (2020)

Saturated waveforms

3.5 (staged) years - 1.1 x 10²¹ POT per year

$$N_{sat.\,waves}^{3.5\,years} = \sum_{v_{\mu,e}, \bar{v}_{\mu,e}} N_{v} \cdot f_{v}^{MC} \approx 2.3 - 3.0 k$$
, where

Caveats: N, values as no selection correction is considered Energy range: 0.5-10 GeV No volume difference between modules N_{ν} : Expected v type events

$$f_{v}^{MC} = \frac{N_{sat.waves}^{MC}}{N_{v}^{MC}} \cdot r_{vD}$$

In this work, FD event rates are calculated assuming the following nominal deployment plan, which is based on a technically limited schedule:

- Start of beam run: two FD module volumes for total fiducial mass of 20 kt, 1.2 MW beam
- After one year: add one FD module volume for total fiducial mass of 30 kt
- After three years: add one FD module volume for total fiducial mass of $40\,\rm kt$
- $-\,$ After six years: upgrade to 2.4 MW beam

Saturated waveforms

Table 2.2: Atmospheric neutrino event rates per year in 40 kt fiducial mass of the DUNE FD.

Sample	Yearly Event Rate
Fully contained atmospheric e-like	1.6×10^3
Fully contained atmospheric μ -like	2.4×10^3
Partly contained atmospheric μ -like	$7.9 imes 10^2$

The DUNE Far Detector Interim Design Report

$$N_{\nu}$$
: Expected v type events

$$N_{sat.waves}^{atm.\ 1\ yr} = \sum_{v_{\mu,e}, \ \bar{v}_{\mu,e}} N_{\nu} \cdot f_{\nu}^{MC} \approx 1 k \quad \text{, where} \qquad f_{\nu}^{MC} = \frac{N_{sat.waves}^{MC}}{N_{\nu}^{MC}} \cdot r_{VD}$$

Caveats: No atmospheric simulation for VD - fractions from VD beam evts simulation

Summary

- Channels saturation on VD similar/lower than HD (charge & light)
- Expected dependence on event energy
- Also homogeneous in the bulk volume
- Signal integral decrease
 - Low values \longrightarrow small impact on deposited energy determination
- Number of saturated channels estimates for design of stress test
- Beam (or atmospheric): ~10³ saturated waveforms per year
- Simple estimates: consider conservative exposure factor
- Cosmic ray muons not evaluated