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Welcome to Fermilab s QCIPU! The 3rd annual, 15t in person!



Qutline:

/ .
O [ m Row.

O Flash Survey on who ja“ are.,

0O What s Fermilab all about?
0 Why (s Fermilab interested in Quantum and QIS?
0 What can quantum do for us?

0 What can we do for quantum?



Intro

O [ Ront. | work tn the Fermilab Quantum theory Department (and at SQMS).
O Originally from [srael. Did my undergrad there.

O Grad school was n the US.

O After 10 years i the bay area, | moved out here.

O | (tke traveling (with my family), g &

Q0
O+ and being a mentor on my kids high school robotics team. Go Huskies!! %O



Intro

O There will be wntroductions, but, show of hands:
0 Who s a rising Senior? Jumtor? Sophomore?
0 Who took a class in quantum mechanics? Not required.

0 Who s studying tn the east coast? west coast? the south? midwest?



PARTICLE PHYSICS

We are Curious!!!

What s everything made of?
What are the basic degrees of freedom?
What rules do they follow?

What does the Universe contain?
What (s its history?

Look small
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Matter-anti-matter

[s there anything else? Could that be the dark matter?

Can we [earn more about cosmic history?



Accelarators, colliders,
— detectors, neufrino experiments,
cosmic rays:




Colliders & Fixed target

O A naive way fo figure out what stuff is made of - smash it at something!!

Fixed-Target Experiments

LHC, Tevatron, ...



Neutrino

O Neutrinos go through everything!

Deep Underground Neutrino Experiment

Sanford
Underground

Research i |
Facility

Fermilab

Incoming beam:
100% muon neutrinos

1600 1400 1200 1000 800

Probability of detecting electron, muon and tau neutrinos



Telescopes, observatories, CMB,
x-ray, gamma-ray, radio, direct
detection experimants:




Cosmic Observation

O Telecopes, broadly defined:

Large
O Magellanic

CMB (microwave R o 8 =

Cloud

NGC 253
()

Gamma-ray



Dark Matter

y_" Dark Matter
(mass ~ GeV - TeV)

e \ Signal
Resonant  / I > Detector
cavity A . Photon frequency
— — - MagnetiC | (“ axion maSS)
| field ) Photon .
recoil energy N =
(tens of keV) Axion ~—— SN a Outgoing
— Particle
Virtual > Incoming
| photon Frequency Particle
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Particle physicists are pushing on the computing edge!



Why Quantum?

If you gave us a quantum computer,
what would we compute?

Can we detect something new with a
quantum device”?



Qubits
O A bit s a building block of tuformation. A binary umit. 0 or 1.

O A qubit (s a quantum system that can be tn either of two states, or tn any
superposition!

e 0 0
O Can be: I
. L =
* Superconducting circutts i
C 1
* -AILOPV\S Classical Bit Qubit

* louns

Going for bits to qubits changes the rules of the game!

(You will learn about Shor/Grover algorithms)



Quantum Simulation

0 We would (ke fo simulate

: : Neutrino
particle physics processes.

O Perturbation theory does not
always work!

Nucleus

O Feynman:  Nature isu't classical, dammit! and (£ you want to make a simulation of
nature, you'd befter make it quanfuim mechanical, and by golly 1's a wonderful
problem, because it doesn't look so easy.”



Quantum Simulation

O But why should we make it quantum mechanical?

O Here 15 a reason: Stmulating a quantum system evolving tn time ts numerically hard!
A “sign problem”
(t) = e My(0)

Rapid oscillation!

A quantum system will keep track of this tnherently



Quantum Simulation

0 What would we simulate?

O For example, some day, Hadronization

O Neutrino nteracting with a nucleus.

O Processes in the early Universe

Detection
~ Hadronization
hadrons @(@

Fragmentation

partons @)D @ ...




Quantum Sensors

O Feynman: Nature isu't classical, dammit! and i you want to make a simulation of
nature, you'd better make 1t quantum mechanical, and by golly 1t's a wonderful
problem, because it doesu't (ook so easy.”

0 Why s (f so hard?
O Because a quantum state 1s VERY seunsifive fo environmental disturbance.

It makes for a great sensor of small effects.

e.g. Dark matter? Gravity waves?



Counting Photons

O Example of a quanfuim computer concept: a box for photons.

O Assume we can confrol and count the number of photons!
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Counting Photons

O Example of a quanfuim computer concept: a box for photons.

O Assume we can confrol and count the number of photons!

0 photons
1 photon

Superposition of
0 and 1 photon

This Is a qubit!

We can use it to do quantum
computation!



Counting Photons

O Example of a quanfuim computer concept: a box for photons.

O Assume we can confrol and count the number of photons!

0 photons
1 photon

Superposition of
0 and 1 photon

This Is a dark matter detector! \
We look for DM that converts
to a photon!

(axions, dark photons, etc)

This Is a qubit!
We can use it to do quantum
computation!



L OoKINg for new particles with cavities

0 Two high quality cavities with with exactly same frequency

e e

A “light-shining-through-wall” experiment. [Dark SRF]

0Oy, a dark matter search: .
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Cavities

(4 /) ¢« , 0
O Boxes for phofons are called cavities.

O Cavities are very useful, have been for
decades, to build particle accelerators!

O Fermilab 15 a world (eader v
superconducting cavifies

O [u fact, cavifies are more than qubits!

SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER



Cavities

(4 /) ¢« , 0
O Boxes for phofons are called cavities.

O Cavities are very useful, have been for
decades, to build particle accelerators!

O Fermilab 15 a world (eader v
superconducting cavifies

O [u fact, cavifies are more than qubits!

0,1, 2,3, 4,... photons. And suppositions!

SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

qudits!



Atom Interferometers

O Superposition allowed for more cool stuff.

O E.g9. atomic clocks: am atom tn a superposition of quantfum states can keep fime!

(a)

¢1> 4 eiAEt/h ¢2>

Time

MAGIS 100, under construction, will look for gravity waves!

(The distance between clocks oscillating...)



In summary

O Fermilab s about figuring out the Universe!

o What's stuff made of?

« How did (F come about?

O Quanfum computing and sensing can play a big role 1 answering our questions!

O [ts a fascinating freld.
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