Fundamental wave-particle
relations: λ : wavelength
Frequency: $\quad f=\frac{E}{h}$

$$
\hbar=h / 2 \pi
$$

wave number: $k=\frac{2 \pi}{\lambda}$
angular
frequency: $\omega=\frac{2 \pi}{T}$
De Broglie
$\left.\begin{array}{l}p=\frac{h}{\lambda}=h \cdot 2 \pi k=\hbar k \\ E=h f=\hbar \omega\end{array}\right\} \begin{aligned} & \text { FUNDAMENTAL WAVE PARTICLE } \\ & \text { RELATIONSHIPS }\end{aligned}$

For each wave, there is a wave equation of which the w.f. is a solution
$\{e x$. electromagnetic wave, follow maxwell equation\}

$$
\nabla \cdot E=0, \nabla_{\times} E=-\frac{\partial B}{2} ; \nabla_{1} B=0 ; \nabla_{\times} B=\mu_{0} \mathcal{E}_{0} \frac{\partial E}{\partial t}
$$

classical wave eq. $\overline{\partial t} \quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad \overline{\partial t}$
Matter waves follow the schrodinger equation:

- We consider a fue particle (no external forces):

$$
\text { Eq: } \quad-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t)
$$

Meaning Born's statistical interpretation:

- free particle:
we guess a possible solution: $i(k x-\omega t)$
PLANE WAVE $\quad \psi(x, t)=A l$
is it a sol?

$$
\begin{aligned}
& +\frac{\hbar^{2}}{2 m} k^{2}\left[A e^{i(k x-\omega t)}\right]=\hbar \omega A e^{i(k x-\omega t)} \\
& \rightarrow \frac{\hbar^{2} k^{2}}{2 m}=\hbar \omega \rightarrow \frac{p^{2}}{2 m}=E \quad\left\{\begin{array}{l}
w a v e \text { eq. } f: x \pm v t \\
e^{i k(x-w / k t)} ; \text { this is a wave } \\
\text { with } v=\frac{\omega}{k}=\sqrt{\frac{E}{2 m}}
\end{array}\right\}
\end{aligned}
$$

it is telling us that for a free particle, the schr. eq. is related to a classical KIN, ENERGY = TOTAL ENERGY accounting of ENERGY The square of the wave function absolute value gives: probability/[unit of length] of finding the particle $|\Psi(x, t)|^{2}$

SUMMARY

- FrEE particle schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t)
$$

- $\psi(x, t)=A l^{i(k x-\omega t)}$
plane wave

$$
\hbar^{2} k^{2}=\hbar \omega
$$

$2 m$

- FUNDAMENTAL PARTICLE-WAVE $p=\frac{\pi}{\lambda}=\hbar k$ ERS

$$
E=h v=\hbar \omega
$$

PHYSICAL CONDITIONS: WELL BEHAVED WAVE FUNCTIONS
The probability of finding a particle between

$$
x-x+d x: \quad{ }_{k} P(x) d x=\psi^{*}(x, t) \psi(x, t) \cdot d x
$$

PROBABIlITY DENSITY
The probability of observing it between x_{1} and x_{2} is:

$$
P=\int_{x_{1}}^{x_{2}} \psi * \psi \cdot d x
$$

- The particle must exist somewhere \rightarrow this condition is imposed Normalizing the w.f $\left[\begin{array}{l}\text { the extreme of integer. } \\ \text { are } \mp \infty\end{array}\right]$

$$
\int_{-\infty}^{\infty} \psi(x, t)^{*} \psi(x, t)=1
$$

to represent a particle
to be physically acceptable a wi must be normalizable P. W. $\int_{-\infty}^{\infty} d x|A|^{2} \cdot e^{i(k x-\omega t)} \cdot e^{-i(k x-\omega t)}=\infty$

* important property of schr. eq. is that it preserves the normaliz. at all times [Griffith eq, 1,21 and following]
\rightarrow we can understand it using the uncertainty priucí pile. The problem with this wave is that cannot represent a particle whose w.f. is nonzero in a limited region of space. A localized wavefunction of this type is called wave packet,
- SMOOTHNESS: W.f. Smooth, 1 deriv. smooth, if not the K,E. could be ∞

What are expectation values:

For a particle in a state ψ, the expectation value of x is:

$$
\langle x\rangle=\int d x x \psi^{*}(x) \psi(x)
$$

- what does it mean? It does not mean that if you measure the position of a particle over and over $\left.\int x d x|\psi|\right|^{2}$ is the average of the results that you obtain
$\langle x\rangle$ is the average of measurements performed on particles All in state 4. Which means: - you prepare a whole ensamble of particles each in the same state ψ and measure the positions of all of them $\langle x\rangle$ is then the average of these results

The expectation value is the average of repeated measurements on an ensample of identically prepared systems; NOT the average of repeated measurements on the same system.
(2) we say the operator \hat{x} "represents" position; to calculate its expectation value we sandwich the appropriate operator between ψ and $\psi^{*} \&$ integrate

$$
\langle Q\rangle=\int d x \psi^{*} Q \psi
$$

OPERATOR: is an instruction to do something on the function that follows it; the position operator tells you to multiply by ' x ' the mow. oper. tells you to differentiate w respect to x.

Well Defined Observables: Eigenvalues Given an operator \hat{Q}, the function $f(x)$ is an eigenfunction of the operator, if and only if the operator acting on the function yields a constant times the same function:

$$
\hat{Q} \underbrace{\lambda}_{\substack{\downarrow \\ \text { eigenfunction }}} f(x)
$$

In general, au operator will have multiple eigenvalues EIGENVALUES, EIGENVECTORS

* How does it work for matrices? we say v is au eigenvector of M if: $M v=O V$ is a number, eigenvalue

Example: Poll

$$
\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

What are the elgon values: $1,1,1 \quad(A)$
What are the eigen values: $0,0,0$ (B)

$$
a_{1}, a_{2}, a_{3}(c)
$$

Heisenberg Uncertainty Relation:
The mere fact that a phemomenou has a wave nature implies inherent uncertainty in its particle properties.

What do we mean by "uncertanty" in an observable?
That if we measure many times the same dos., the number I find varies in a range of values

UNCERTAINTY \longrightarrow MEASURE HOW YAK DEVIATIONS ARE FROM THE MEAN average value

HEISENBERG UNCERTAINTY PRNCIPLE:
\rightarrow Because of a particle wave's nature, it is theoretically impossible to know precisely both its position along an $a \times i s$ and ats momentum component along that axis

- Δx and Δp_{x} cannot be zero simultaneously

$$
\Delta p_{x}, \Delta x \geqslant \frac{\hbar}{2} \quad \text { (Heisenberg Nobel prize 1932) }
$$

Examples to better understand the uncertainty punciples:
this wave if infuite and regular $\xrightarrow[x]{\longrightarrow \bigcap \bigcap_{\lambda}}$ well defined wavelength λ $p=\frac{h}{\lambda}$; Any idea on Δp ?
ΔP_{x} is 0 ; but we don't know anything about its position $\Delta x=\infty$

Wave is regular over a finite region Not everywhere $\left\{\begin{array}{c}l \text { and } p \text { not well } \\ \text { olefined }\end{array}\right\}$

$$
\Delta p \neq 0
$$

Better known position.
we further ustricted the region where the wave is regular and we can define λ, p

Hamiltonian:

In classical mechanics the total energy: kin + potential is called: Hamiltonian

Hamiltonian $=k i n \cdot e n+$ pot $\cdot e n$

$$
H(x, p)=\frac{p^{2}}{2 m}+V(x)
$$

the Hamiltonian operator obtained by the canonical substit. $p \rightarrow-i \hbar \frac{\partial}{\partial x}$ is

$$
\hat{H}=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}+V(x, t)
$$

\rightarrow we saw the Sch. eq, for a free particle:

- $-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t)$
- General expression; $\hat{\partial} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t)$

$$
-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x, t) \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t) \text { this is }
$$

class of problems
\rightarrow STATIONARY STATES:

If the potential does mot dep. on t; then the $\operatorname{sch} r$. eq cal be solved by:

- $\bar{\Psi}(x, t)=\psi(x) \cdot \phi(t)^{\text {separation of variables }}$
it $\psi(x) \frac{\partial}{\partial t} \phi(t)=-\hbar^{2} \cdot \phi(t) \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x) \psi(x) \phi(t)$ we can $\operatorname{div} / \Psi(x) \phi(t)$
$i \hbar \frac{1}{\phi(t)} \frac{\partial}{\partial t} \phi(t)=-\hbar^{2} \frac{1}{\psi(x)} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x)$
each of these terms needs to be $=$ constant

2 independent equations: by E TEMPORAL PART: isth $\frac{1}{\phi}(t) \frac{\partial \phi}{d t}(t)=C$

- first ocoler diff. $\phi(t)=e^{-i E / \hbar t}$ equation

$$
\left(\frac{E}{\hbar}\right)=\underset{\sim \text { freq }}{[t]^{-1}}=w \rightarrow C=\hbar w=E
$$

for the sp.part we solve: this is called TIME INDEP. SCHROD, eq

$$
-\frac{\hbar^{2}}{2} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+u(x) \psi(x)=E \psi(x)
$$

$$
\hat{H} \psi(x)=E \psi(x)
$$

\rightarrow we want to find eigenvalues and eigenstates for our operator:
\hat{H} the whf. dep. on t
Stationary state: $\Psi(x, t)=\Psi(x) e^{\frac{\text {-Et }}{\hbar}}$
the prob. density, which is does hot dep. on Physical property; $|\Psi(x, t)|^{2}=\psi^{*}(x) \psi(x) \rightarrow \quad t$
for stationary states, the whereabouts of the particle do mot change with time

Why stationary states are cool:
Classically an electron (charged particle) orbiting in an atom should constantly lose $e n$. in the form of $\ell, 1 m$. radiation.

In Q.M. the electron is a stationary cloud. Its prob. density is = const., its charge density is = const. its energy is a well defined const. Q,M, explains atom stability accel. charge radiates en. Larmor formula

