What is a Qubit?

Quantum Computing Internship for Physics Undergraduates Program (QCIPU) - 2023

Edison Murairi

The George Washington University (GWU)

June 7, 2023

э

1/21

Introduction Preliminary

Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

Operations on a qubit (What can we do on a qubit?)
What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

- 6 How are qubits made?
- 7 Supporting Slides

2/21

< A > <

Classical bits

Bit

- Bit stands for binary digit: 0 or 1.
- It is a a way to represent information on a digitally.

Example

Suppose you have 4 objects to store in a computer. You can use two bits.

First object $\mapsto 00$ Second object $\mapsto 01$ Third object $\mapsto 10$ Fourth object $\mapsto 11$

(1)

3/21

< A > <

Introduction

Preliminary

2 Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

Operations on a qubit (What can we do on a qubit?)
What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

- 6 How are qubits made?
- 7 Supporting Slides

Bra-Ket notation

Notation

- We denote a state Ψ with a ket: $|\Psi
 angle$
 - Kets $|\Psi\rangle$ correspond to the vectors we know and love
- The 'complex conjugate' is called bra: $\langle \Psi |$
 - Bras are the 'dual' of the kets.
- Bras and Kets belong to different spaces.
- This lecture will focus on Kets.

Quantum bit (Qubit)

Definition

A qubit is a two-level quantum state: $\left|\Psi\right> = \alpha \left|0\right> + \beta \left|1\right>$

Properties

- α , β are called amplitudes.
- α , β are complex numbers in general.
- A valid qubit state must be **Normalized**: $|\alpha|^2 + |\beta|^2 = 1$

Interpretation

- A qubit state is a superposition of two different states:
 - ${}\hspace{0.1 cm} \mid 0 \rangle$ with amplitude α
 - $\blacktriangleright ~|1\rangle$ with amplitudes β

イロト イポト イヨト イヨト

Measurement

'Simple' Measurement: Possible results $|0\rangle$ or $|1\rangle$

 $\mathsf{Qubit:}\ \left|\Psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle$

- \bullet After measurement, the superposition collapses to either $|0\rangle$ or $|1\rangle$
- We obtain $\left|0\right\rangle$ with Probability: $P\left(\left|0\right\rangle\right)=\left|\alpha\right|^{2}$
- We obtain $\left|1\right\rangle$ with Probability: $P\left(\left|1\right\rangle\right)=\left|\beta\right|^{2}$

Surprise :)

• Do you see why a qubit must be normalized $|\alpha|^2 + |\beta|^2 = 1$?

7/21

Introduction

Preliminary

2 Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

- Operations on a qubit (What can we do on a qubit?)
 - What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

- 6 How are qubits made?
- 7 Supporting Slides

< A >

Vector Representation

From Bra-Ket to Vector

Given a qubit: $\left|\Psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle$

$$\begin{aligned} |0\rangle \mapsto \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ |1\rangle \mapsto \begin{pmatrix} 0\\ 1 \end{pmatrix} \end{aligned}$$

(2)

A qubit state can be treated as a vector (with everything nice we know about vectors)

$$|\Psi\rangle = \alpha \begin{pmatrix} 1\\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} \alpha\\ \beta \end{pmatrix}$$
(3)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Two qubits in vector form

Vector Form

Can you represent the qubit state

$$|\Psi\rangle_1 \otimes |\Psi\rangle_2 = \alpha_1 \alpha_2 |00\rangle + \alpha_1 \beta_2 |01\rangle + \beta_1 \alpha_2 |10\rangle + \beta_1 \beta_2 |11\rangle$$
 (4)

in vector form?

э

イロト イポト イヨト イヨト

Introduction

Preliminary

2 Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

Vector Representation

- Operations on a qubit (What can we do on a qubit?)
 - What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

- 6 How are qubits made?
- 7 Supporting Slides

What can we do on a qubit? Unitary evolution

We can change the state of a qubit by multiplying with a Unitary matrix: $|\Psi'\rangle=U\,|\Psi\rangle$

Unitary matrix (U)

- A matrix U is unitary if (and only if): $UU^{\dagger} = \mathbb{1}$
- In other words $U^{\dagger} = U^{-1}$

Example

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X X^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(5)

What is the simplest example of a unitary matrix you can think of? If we don't find it now, I will ask again after the next slide

< □ > < 同 > < 回 > < 回 > < 回 >

12/21

Unitary evolution – Continued

Properties

- The determinant of a unitary matrix is a complex number with magnitude 1: |Det(U)| = 1
- Unitary matrices conserve the normalization of a vector.

Insight :)

Do you see why we will mostly use unitary matrices to change the state of a qubit?

Introduction

Preliminary

2) Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

- Operations on a qubit (What can we do on a qubit?)
 - What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

- How are qubits made?
- 7 Supporting Slides

< A >

Yes/No/Maybe

Description	Yes/No/Maybe
$ \Psi\rangle = \frac{1}{\sqrt{2}} (\text{head}\rangle + \text{tail}\rangle)$ is a qubit valid state	
$\check{H^2} = \mathbb{1}$ and $H^\dagger = H$. Is H unitary?	
$\ket{\Psi}=rac{e^{\mathrm{i}\phi}}{\sqrt{2}}\left(\ket{0}+\ket{1} ight)$ is a qubit valid state	
Every unitary matrix has an inverse	
A matrix M has 0 determinant. M can be unitary	
A unitary matrix must be a square matrix	

Last one: Yes/No/Maybe

You measure a qubit you find $|0\rangle.$ If you measure again, you may get $|1\rangle.$ Answer:

3

イロト イヨト イヨト ・

Introduction

Preliminary

2) Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

- Operations on a qubit (What can we do on a qubit?)
 - What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

6 How are qubits made?

7 Supporting Slides

< A > <

What makes a good qubit?

- Qubits must be easy to control (manipulate)
- Qubits must be isolated from its surrounding

Decoherence time

How long does the qubit take to lose its quantum state.

- The longer the better.
- IBM machines have tens or hundreds of microseconds decoherence time.

How are qubits made?

Superconducting qubits

- $\bullet\,$ Clockwise vs counter-clockwise current are states $|0\rangle$ and $|1\rangle$
- Most popular, pursued by companies such as Google and IBM.
- IBM Osprey has 433 superconducting qubits.

Photonic qubits

- Use light light polarization
- Pursued by companies such as Xanadau
- May resist decoherence but are difficult to scale.

Introduction

Preliminary

2) Quantum Bit

- Bra-Ket Notation
- Definition, properties and interpretation
- Measurement

3 Vector Representation

Operations on a qubit (What can we do on a qubit?)
What can you do with a qubit? Multiply it with a unitary matrix

5 Yes/No/Maybe

6 How are qubits made?

7 Supporting Slides

< A > <

Conjugate Transpose (Hermitian Conjugate) of a matrix: M^{\dagger}

Definition

The conjugate transpose (Hermitian conjugate) of a matrix M is

$$M^{\dagger} = (M^*)^T = (M^T)^*$$

Example

Edison Murairi (The George W

$$M = \begin{pmatrix} 1 + \mathbf{i} & -\mathbf{i} \\ 1 & 2\mathbf{i} \end{pmatrix}$$

(6) (7)

ashington Uni	What is a Qubit?	June 7, 2023	20 / 21

Conjugate Transpose (Hermitian Conjugate) of a matrix: M^{\dagger}

Definition

The conjugate transpose (Hermitian conjugate) of a matrix M is

$$M^{\dagger} = (M^*)^T = (M^T)^*$$

Example

$$M = \begin{pmatrix} 1 + i & -i \\ 1 & 2i \end{pmatrix}$$
(8)
$$M^* = \begin{pmatrix} 1 - i & i \\ 1 & -2i \end{pmatrix}$$
(9)
$$M^{\dagger} = (M^T)^* = \begin{pmatrix} 1 - i & 1 \\ i & -2i \end{pmatrix}$$
(10)

э

A D N A B N A B N A B N