

Creating Superpositions

Part 2/2: Quantum mechanical spin and the Stern-Gerlach experiment

Benoît Assi (Fermilab)

QCIPU Summer School

Overview

What is the **spin** of a quantum particle?

Through spin we will learn about **basis** choices and measurements

Understand the concept of **commutability** and how it relates to simultaneity of measurement

Define quantum numbers by a complete set of commuting observables (CSCO) which parametrise a state

Brief recap

-> Considered B-S in classical & are desc. Detector 1 Acre splitters/pluse-difters/kirrons QHZ interferonder. $\frac{1}{\sqrt{2}}$ Conpored interpretations: Beam Splitter Classical Ex more/particle vs. quarties pl Detector 2 -> Found contradiction in classical exptantion / the 2 expt's & no contral. / qualing. MZOPS allows one to רשים אין MZ Interferone Mirror 1 Detector 1 eam tter 1 Beam Splitter 2 PS Detector 2 Mirror 2 Photon Source

Stern-Gerlach Experiment

-> Recall: Total any mon. $J = L + S : SL = C \times P$ = CXE <-> orbital -> Require zysters equiv. to e =) L=O & S=S= ~ Silverations ?) Ag 47 has L= Q & all spins areage out except for single e a outer shall. - Jpin => Jpin nagnetic noment en [Ms = e Ins] en Displacement by ext. B-field -) SG Expinent : Classical expect ?? Atom beam Oven 2,8,18,18,1 47: Silver Screen & us orly . angeler non. Screen Np=Ne= no Lor. Jone Mognetic field : neutral atom Oven CLASSICAL electron magnetic PREDICTION dipole moment

Quantum Explanation

 $z) | \psi \rangle = \alpha | - \rangle + \beta | \epsilon \rangle$ $l | - \rangle = \frac{1}{5z} (|1\rangle + |1\rangle)$ Random +x + z + so x +z + z + so x +z + z + s so x -x + z + s so x -z + s so x

Basis Transformations

-> What operations represent the S-G 'getts'? -) Consider z-basis & ve con represent: $| \mathbf{1} \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ In this basis : $\hat{S}_{n,q,r} = \overline{\sigma}_{n,q,r}/z$: $\left\{\begin{array}{l} \overline{\sigma}_n = \binom{q}{l} \\ \overline{\sigma}_q = \binom{q$ $\rightarrow \underbrace{\operatorname{Measurement}}_{A} \quad f \quad spin : \langle \langle T | \hat{S}_{\pm} | T \rangle = (10) \pm (\begin{smallmatrix} i & 0 \\ 0 & -i \end{smallmatrix}) \begin{bmatrix} i & 0 \\ 0 & -i \end{smallmatrix}) = - \underbrace{k}_{\pm} \checkmark \\ \langle L | \hat{S}_{\pm} | L \rangle = (01) \pm (\begin{smallmatrix} i & 0 \\ 0 & -i \end{smallmatrix}) \begin{bmatrix} i & 0 \\ 0 & -i \end{smallmatrix}) = - \underbrace{k}_{\pm} \checkmark \\ \langle T | \hat{S}_{nyg} | T \rangle = \langle L | \hat{S}_{nyg} | L \rangle = 0 \checkmark (\operatorname{duck})$ -) In general a mensurement in QM of a property of a quantum state: (41214) = quantum #

Basis Transformations

-) Jimiltaneity:
$$[\hat{Q}_{1}, \hat{Q}_{2}][\Psi] \equiv (\hat{Q}_{1} \hat{Q}_{2} - \hat{Q}_{2} \hat{Q}_{1})]\Psi$$

 $I = [\hat{Q}_{1}, \hat{Q}_{1}] \neq 0 = 0$ connet be necessarily in any lines.
-) $\hat{J}_{n} [\hat{J}_{2}] = (0, 1) = 0$ (or known) zmieltenenty!
 $[\hat{S}_{n}, \hat{S}_{2}] = \frac{1}{4} \{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \} \neq 0$ in V
 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} \end{pmatrix} = 0$ (in V)
 $(\hat{C}_{1} - \hat{O}) = (\hat{C}_{1}, \hat{O})$
 $= 0$ $S_{n}, g, g = 0$ unique qualtere H^{1}
-) Other won-convertie observables \tilde{S}
 $n \neq R = 0$, $f \in R = 0$, etc...
 $= 0$ Hup \tilde{S} $\Delta x \Delta p > \tilde{T}/2$

Summary of lectures

Quantum **superposition** means a state can be linearly composed of two or more **basis states**

Basis states must be chosen with **observable** in mind, always pick appropriate basis to simplify your life! (useful for Q.C.)

Measurements defined by expectation value of an operator

Not all observables are measurable **simultaneously**, to check this check that the operators commute when applied to a state

Extras (CSCO)