

Two Qubit Gates: CNOT a

Two Qubit Gates: CNOT and SWAP

Oluwadara Ogunkoya June 13, 2023

MS MATERIALS & SYSTEMS CENTER

Oluwadara Ogunkoya

Single Qubit gates review and multi-qubit gates

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, \qquad |+\rangle = \frac{1}{2}(|0\rangle + |1\rangle), \qquad |-\rangle = \frac{1}{2}(|0\rangle - |1\rangle)$$

$$(0.1)$$

- X gate flips $|0\rangle \leftrightarrow |1\rangle$
- $H \text{ gate} |0\rangle \mapsto |+\rangle$, and $|1\rangle \mapsto |-\rangle$
- $Z \text{ gate} |0\rangle \mapsto |0\rangle$, and $|1\rangle \mapsto |1\rangle$

Multi-qubits (two qubits)– Most important one **Controlled NOT (CNOT)** gate. Essential in Quantum algorithms and used for entagling qubits. CNOT gate acts on two qubits and results also in two qubits. The first qubit is called the **control** qubit while the second is called the **target** qubit. The gate follows the rule:

- (1) If the control qubit is $|0\rangle$, then leave the target qubit as the same
- 2) If the control qubit is |1
 angle, then flip the target qubit i.e. on the target, $|0
 angle \leftrightarrow |1
 angle$

Oluwadara Ogunkova

The truth table for the CNOT gate is shown:

Before		After	
Control bit	Target bit	Control bit	Target bit
$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$

Examples

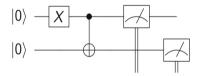
1. The fig shows the quantum circuit sending $|01\rangle$ through CNOT gate, what is the output?

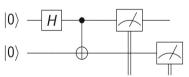
2. In the fig, the control qubit is in a superposition of $|0\rangle$ and $|1\rangle.$ What is the effect of the CNOT gate?

Oluwadara Ogunkova

Hence the matrix form is easily derived as

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$





Two Qubit Gates: CNOT a

As the name implies, it swaps the position of the 1st and 2nd qubit. Hence,

- (1) $|00\rangle$ and $|11\rangle$ remain unchanged after applying the SWAP gate
- (2) $|01\rangle$ becomes $|10\rangle$, and $|10\rangle$ becomes $|01\rangle$ after a SWAP gate operation.

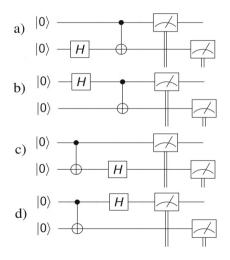
The matrix form is given as:

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example: Can you predict whic state is produced by the quantum circuit?

Practice Questions

Can you predict which states will be produced by these quantum circuits?



Two Qubit Gates: CNOT a

Discussion of native 2-qubit gates for different machines. Why are 2-qubit errors different/worse? Solovay-Kitaev Theorem

Native gates: Set of gates physically executable on quantum hardware.

• Not all "textbook" gates are directly implementable on a real device. So such gates are implementated by composing native gates. Some examples...

$$CZ_{q_0,q_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad \text{iSWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(0.3)

 $CZ |00\rangle = |00\rangle, CZ |11\rangle = -|11\rangle,$ $iSWAP |01\rangle = i |10\rangle, iSWAP |10\rangle = i |01\rangle$ (0.4)

Controlled-Z (CZ): applies a phase flip to the target qubit if the control qubit is in the state $|1\rangle$. **iSWAP:** exchanges the state amplitudes of two qubits, introducing a phase difference.

$$CR(\theta) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & 0 & -i\sin\left(\frac{\theta}{2}\right) & 0\\ 0 & \cos\left(\frac{\theta}{2}\right) & 0 & i\sin\left(\frac{\theta}{2}\right)\\ -i\sin\left(\frac{\theta}{2}\right) & 0 & \cos\left(\frac{\theta}{2}\right) & 0\\ 0 & i\sin\left(\frac{\theta}{2}\right) & 0 & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$
(0.5)

Cross-Resonance gate (CR): It is an entangling gate that uses the interaction between qubits to generate entanglement.

$$FSim(\theta, \phi) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(\theta) & -i\sin(\theta) & 0\\ 0 & -i\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 0 & e^{i\phi} \end{pmatrix}$$
(0.6)

FSim: The FSim gate is a tunable two-qubit gate that generalizes the CNOT and CZ gates. It can be used to perform entangling operations with arbitrary angles.

For different quantum (2-qubits) hardware architectures, there are different native gates:

- IBM Quantum: Controlled NOT (CNOT) + Controlled-Z (CZ) + iSWAP + Cross-Resonance gate (CR).
- Bigetti Quantum Computing: The Rigetti quantum computers, such as Aspen-9, provide the following native 2-qubit gates: CNOT + iSWAP + FSim.
- Honeywell Quantum Solutions: The Honeywell quantum computers, like the Honeywell H1 system, use the following native 2-qubit gates: CNOT + iSWAP.

Figure: IBM 433-qubit computer

Figure: Rigetti processor

Figure: Honeywell model H1

Oluwadara Ogunkoya

Two Qubit Gates: CNOT a

Why 2-qubit errors are worse/different?

Quantum 2-qubit errors can be worse compared to single-qubit systems errors due to several reasons:

- Increased Complexity: requires precise control over two qubits simultaneously. i.e more complex interactions and synchronization ⇒ additional sources of errors.
- Error Propagation: Errors propagate more easily than in single-qubit ones. A single error affects the entanglement between the qubits circuits.
- Sensitivity to Noise and Decoherence: Quantum systems are prone to various sources of noise, such as interactions with the environment and control imperfections. These effects can be more pronounced in 2-qubit systems due to the increased complexity and entanglement involved.
- Calibration and Crosstalk: Achieving precise control over 2-qubit gates requires careful calibration of the control parameters and mitigation of crosstalk (unwanted interactions) between qubits => unintended gate operations or introduce errors.

Research to reduce these errros include error correction codes, error mitigation techniques, improved qubit designs, and enhanced control mechanisms at

A universal gate set: set of finite gates to which every unitary operation can be reduced. Example: 1. $R_x(\theta), R_y(\theta), R_z(\theta)$, Phase gate $P(\phi)$, CNOT 2. CNOT, $H, S = \sqrt{Z}, T = \sqrt{S}$

Technically impossible since number of unitaries is uncountable but the universal set is countably finite. How do we then use the native gates to generalize any unitary operation? To implement a unitary gate, we would atleast need infinitely many gates in the universal set (and still get some errors though!).

The Solovay-Kitaev theorem – establishes connection between efficient quantum gate synthesis and a universal quantum gate set.

Oluwadara Ogunkova

Solovay-Kitaev Theorem

Let \mathcal{G} be a finite set of elements in SU(2) containing its own inverses, such that $\langle \mathcal{G} \rangle$ is dense in SU(2). Let $\varepsilon > 0$ be given. Then there exists a constant c such that for any $U \in SU(2)$, there is a sequence S of gates from \mathcal{G} of length $\mathcal{O}(\log^c(1/\varepsilon))$ such that $||S - U|| \le \varepsilon$

More formally, given a universal set of gates (a set of gates $\{S\}$ that can generate any unitary gate to arbitrary precision), the Solovay-Kitaev theorem states that for any desired unitary gate U and any error $\varepsilon > 0$, there exists a sequence of gates from the universal set that approximates U up to error ε .

The efficiency is measured in terms of the number of gates required, and the theorem shows that the number of gates needed scales logarithmically with the desired precision.

```
Example: R_X(0.8) = HTH with error 0.01
```


For what values of θ and ϕ is the FSim gate equal to the CZ gate?

THANK YOU

Oluwadara Ogunkoya