Introduction to Classical Error Correction

THE UNIVERSITY OF CHICAGO

Errors in Classical information

Fig. 1-Schematic diagram of a general communication system.

Warm up: Parity Check Code

- Rule: The coded message always has even number of 1 in a piece string 010...
- If I spot odd number of 1 , there must be some error.
- Example: Use 9 bits to encode a piece of information
- 000000000
- $001000000 X$
- Q1: How many different code words ("CORRECT MESSAGE") are allowed? (2^8)
- Q2: How many "flips" at least can make an undetectable error? (2)

$[[n, k, d]]$ code

- $n=$ \# of bits used in "a piece of information"
- $\mathrm{k}=$ \# of logical bits $=\log _2$ (\# of code words)
- $d=$ code distance $=$ minimum $\#$ of flips to make an undetectable error

The parity check example is $[[9,8,2]]$

- Q3: If I detect an error in the parity check code, can I know how to correct it?
- No

Make the code correctable!

Rectangular parity check

Rule: If you receive a 9-bit message, stack it into a $3^{*} 3$ square.
Each column and each row must have even number of 1 .

$$
\begin{array}{|llll}
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array} \quad \sqrt{0} \begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array} \quad \begin{aligned}
& x \\
& \text { what is the "most likely" errar)? }
\end{aligned}
$$

Q1: [[n, k, d]]=? (Hint: how to go from one codeword to another?) [[9,4,4]]
Q2: How many bit flips can make an UNCORRECTABLE error? 2

Another example: Majority Vote

- 111111111
- 000000000
- Anything else is not a codeword, and should be corrected according to the majority. Example: 111000111 -> 111111111
$Q:[[n, k, d]]=$?
[[9, 1,9]]

What makes a good code?

- Higher k / n : efficient use of bits
- Higher d: can detect more errors
- Efficient decoding
- Examples
- Hamming code
- Linear codes...

Tradeoff: if the message is "tightly packed" with codewords (high k / n), it's less likely to have room for errors (lower d)

What is the capacity limit? - Classical information theory

Shannon theorem

- Length of the coded message to send: M_{C}
- Length of the coded stat message: M
- For any bit in M_{C}, the probability to flip is q

$$
\frac{M}{M_{C}} \leq 1-q\left[\log _{2}\left(\frac{1}{q}\right)+(1-q) \log _{2}\left(\frac{1}{1-q}\right)\right]
$$

Feynman Lectures on Computation, Chapter 4

Error correction in nature - DNA!

4^3 DNA/RNA codons for 20 amino-acids +1 stop codon

Redundancy - room to tolerate errors!

Q: Using Shannon's theorem, estimate what error rate q is tolerated in the DNA-to-protein process

Hint (you can disagree with this)

- Shannon: $\frac{M}{M_{C}} \leq 1-q\left[\log _{2}\left(\frac{1}{q}\right)+(1-q) \log _{2}\left(\frac{1}{1-q}\right)\right]$
- LHS: $\frac{M}{M_{C}} \sim \frac{\log _{4}(21)}{3}$
- RHS: $\log _{2} \rightarrow \log 4$, because there are 4 base pairs.
- Look up the true error rates in nature. How does the estimate compare?

