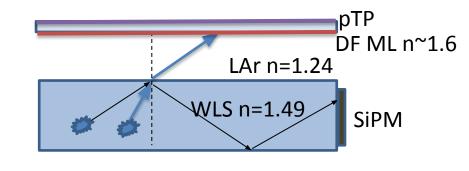
X-ARAPUCA Photon Collection

C. Brizzolari, <u>L. Meazza</u>, C. Cattadori, F. Bruni on behalf of the WG 06/06/2023

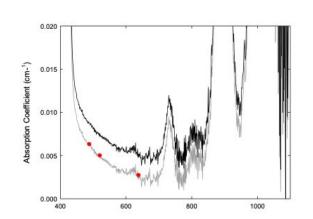
PDE enhancing


The two XA photon collection mechanisms:

- Lightguiding (LG): For θ > θc (=56°) pTP downshifted photons are trapped into the LG and quided to SiPM.
- Dichroic Filters (DF): For θ < θc
 photons leave the lightguide and
 may reach the SiPM by multiple
 bounces onto the DF & reflectors

contribution to PDE from light guide + dichroichs

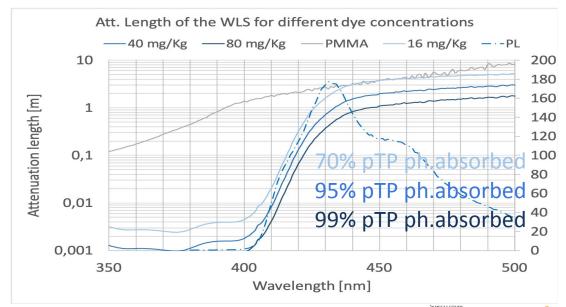
contribution to PDE from dichroichs only


PDE increase from dichroichs

	PDE		
config	bl 0.5mm	VB 0.5mm	VB 0.1mm
dich ON	0.95%	1.33%	1.46%
dich OFF	0.78%	1.19%	1.33%
ON/OFF	~+20%	~+13%	~+9%

WLS for FD1&FD2: Attenuation length (I_{3tt})

L. Meazza


A=
$$\log_{10} (1/T)$$

T= $I/I_o \exp(-d/I_{att})$
A = ε c d

 ε = molar extinction coeff. c = concentration

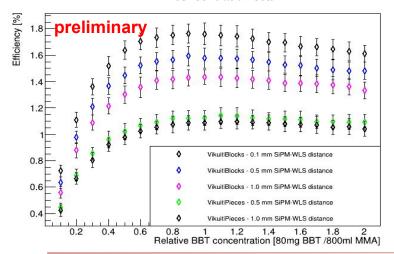
d = optical path

The $T(\lambda)$ measured at the spectrophotometer on a 4 mm sample are corrected (shifted) by the laser measurements

The att.length (I_{att}) is derived (the method and the results will be published)

Chromophore concentration

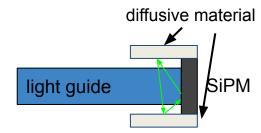
- chromophore concentration determines:
 - % of photons downshifted from ~350nm to ~450nm
 - blue light (~450nm) bulk absorption
 - the higher the conc. the higher the WLS and absorption
 - we want maximum WLS and minimum absorption
 - need to find an optimum
 - depends on the module configuration
- another way to increase WLS is to thicken the light guide


L. Meazza

- does not impact the absorption
- constraints? <5mm?

HD-XA configuration

- **HD-XA**: **short** possible optical paths
 - 480mmx93mm
 - attenuation length @ 430nm is now 37cm
 - if properly trapped light can be reflected at the edges 3-5 times before being absorbed


BBT concentration scan

- for the SuperCell, chromophore concentration is not critical
- an optimum can be easily achieved
 - ok as it is now

VD-XA possible configurations

- VD-XA: much longer possible optical paths (O(m) -> reflections?)
 - o but an att. len. O(m) would mean very low WLS (<70%)
- 2 possible ways of optimizing the MegaCell (just a guess for now):
 - HD-XA like: reduce chrom. conc. & thicken lg & maximize trapping (would require high optical path O(m))
 - may not be effective: optimum PDE possibly still too low
 - most of (?) the light is absorbed in the light guide trying to be reflected from side to side if acceptable WLS has to be kept
 - att. length O(1m) & maximize extraction at lg edge
 - ~100% WLS
 - diffusive light guide edges?
 - diffusive frame around SiPMs? PTFE? TiO2 paint?
 - sort of an integrating sphere (but half open)

