

Particle ID with pulse shape discrimination in protoDUNE

Vitaliy Popov, Aviv Ben Porat, Erez O. Cohen, Adi Ashkenazi

vitaliy.w.popov@gmail.com

Motivation

Insufficient knowledge of the energy carried by <u>undetected particles</u> emerging from these interactions, such as neutrons, can skew the reconstructed neutrino energy spectrum and bias the extraction of oscillation parameters, and searches for new physics.

Studies show that ~40% of QE events have at least one neutron.

Goals

Main goal: Neutrons identification in DUNE with light Pulse Shape Discrimination (PSD) technique.

[*JINST 10 (2015) 08, P08002*] [Phys. Rev. B **27**, 5279] [*JINST* 16 (2021) 09, P09027]

We are currently working on GEANT simulation of neutron interaction in LAr and studying the light yield.

While neutrons are our main goal we are interested in studying PDS response to various particles in protoDUNE environment.

Beam data

Beamline along with instrumentation provides good conditions for the study PDS signals induced by electrons/muons/pions/protons.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 111001 (2017)

TABLE III. Trigger rate at the NP-02 experiment for a W (0.4-3 GeV/c) target and a Cu(4-12 GeV/c) target for the case of H2-VLE. The rates correspond to 10^6 , 80 GeV/c secondary particles generated at the T2 target.

Momentum $[GeV/c]$	Electrons	Kaons	Muons	Protons	Pions	Trigger rate [Hz]
0.4	7	0	0	0	0	7
1	21	0	0	4	3	28
2	17	0	0	7	12	36
3	14	1	1	10	30	56
3	145	1	1	16	49	213
4	117	3	1	16	80	218
5	94	5	2	20	100	222
6	77	9	2	25	133	247
7	69	11	2	28	169	279
8	59	16	3	35	193	305
9	51	19	3	37	227	337
10	46	22	3	45	254	370
11	41	27	3	53	268	393
12	38	29	3	60	292	422

Beam data: 7 GeV runs

Analyzed events have to pass the following selection criteria:

nTracks == 1;

Track_index == 1;

Cherenkov 1 & 2 == 1 (for muons and pions);

150<TOF<160;

Technique presented by Dante Totani

While muons and protons could be easily distinguished by the amount of light deposited in the detector, prompt fractions for both kinds of waveforms are very similar.

Neutron source runs

<u>Runs 2020:</u>

 DD generator provides [2, 3] MeV neutrons with intensity peak at 2.5 MeV; (Taking into account performance of protoDUNE PDS ~1.6 photons/MeV for *e* at 3.3 meters)

 Two mode of running: continuous and pulsed; Pulses width was set up to 175 μs;

(Much larger than PDS readout window $-13\mu s$)

Runs 2023:

- What will be the configuration: neutron energy, pulse width, intensity?
- Where DD/DT generator will be installed? (My personal concern how far from closest PDS)
- Trigger operation?
- Is there a possibility for muon veto? (Assuming short pulse);
- Is there centrally produced MC simulation for planned runs?

BACKUP SLIDES

Moving from analysis of each channel to the sum of all-one-type channel in event. Waveforms from various readout channels shown on the left, sum of all waveforms on the right.

Only one type of sensor is shown on the plots.

Distributions of maxima for event makes much more sense then for particular channel in event, meaning time of the signal relative to the trigger time is quite stable.

On average protons depose much more light then muons.

NO significant distinctions on the shape of average waveforms. (Up to scale - left, normalized - right)

Prompt fraction definitions

A couple of definitions for the light prompt fraction are used.

	APA3 Entire P								APA2 (D Channel Map (APA- Face APA1 APA- Face B								*Modified SSP		
	USDaS MSDaS DSDaS														I		SSP_Serial#								
	PD Module	НВ	SSP	SSPch	DA	Qch		PD Module	НВ		SSPch	DAQc	'n		PD Module	НВ	SSP	SSPch	DA	Qch	I				
TOP of Cryo	002-0047-FL34	Hamamatsu	SSP503	0-3	216	219	Ι,	002-0002-FL22	Hamamatsu	SSP601	0-3	240	243		001-0003-FL01	SensL-C1	SSP401	0-3	144	147	I	USDaS	MSDaS	DSDaS	
	002-0008-1U54	Hamamatsu	SSP503	4-7	220	223		002-0054-IU22	Hamamatsu	SSP601	4-7	244	247		002-0044-IU50	SensL-C1	SSP401	4-7	148	151	I				
	002-0058-FL24	Hamamatsu	SSP503	8-11	224	227		002-0059-FL08	Hamamatsu	SSP601	8-11	248	251		002-0039-FL29	SensL-A1	SSP401	8-11	152	155	1	127	131	120	
	002-0063-IU19	Hamamatsu	SSP504	0-3	228	231		002-0020-1U09	Hamamatsu	SSP602	0-3	252	255		003-0002-1U27	SensL-C1	SSP402	0-3	156	159	I	125	130	119	
	003-0026-FL07*	SensL-C1	SSP501	0-3	192	195		002-0060-FL39	Hamamatsu	SSP602	4-7	256	259		002-0025-FL25	SensL-C1	SSP402	4-7	160	163	1	132	129	118	
ſ	1									SSP603	0-3	264	267									121	128	117	
	002-0014-IU26	Hamamatsu	SSP504	4-7	232	235		ARAPUCA-2	Hamamatsu	SSP603	4-7	268	271		003-0011-IU37	SensL-C1	SSP402	8-11	164	167					
	002.0024.51.22	Sanal C1	CEDE 01	47	100	100		002.0055.51.40	Hamamatau	SSP603	8-11	2/2	2/5		002 0048 5142	Concl. C1	660402	0.2	169	171		USRaS	MSRaS	DSRaS	
(003-0004-11148	Sensi-C1	SSP501	4-7 8-11	200	203	· .	002-0055-FL40	Hamamatsu	SSP604	0-3	200	205	· .	003-0048-FL42	Sensi-C1	55P405	0-5	100	171		123	113	109	
	002-0041-FL36	Hamamatsu	SSP504	8-11	236	239	<u>ا</u>	002-0013-1001	Hamamatsu	SSP604	4-7	280	283		002-0038-IU35	SensL-C1	SSP403	8-11	172	179		116	112	108	
Bottom of Cryo	002-0036-IU47	SensL-C1	SSP502	0-3	204	207	' I	002-0031-IU02	Hamamatsu	SSP604	8-11	284	287	' I	002-0040-FLP06*	SensL-C1	SSP404	0-3	180	183		115	111	107	
REAL																					I	114	102	106	
DEAM																					I				
		ι	JSRaS							MSRaS							DSRaS				Ι		SSP_IP#		
	PD Module			SSPch	DA	Qch	_	PD Module			SSPch	DAQc	h	_	PD Module			SSPch	DA	\Qch	I				
TOP of Cryo	003-0031-IU20	SensL-A1	SSP301	0-3	96	99		002-0049-IU16	SensL-A1	SSP201	0-3	48	51		403-003-0063-IU28	SensL-A1	SSP101	0-3	0	3	1	USDaS	MSDaS	DSDaS	
	002-0055-FL03	SensL-A1	SSP301	4-7	100	103		001-0054-FL18	SensL-A1	SSP201	4-7	52	55		403-003-0041-FL9	SensL-A1	SSP101	4-7	4	7	I				
	002-0020-IU31	SensL-A1	SSP301	8-11	104	107		002-0035-IU13	SensL-A1	SSP201	8-11	56	59		403-002-0001-IU15	SensL-A1	SSP101	8-11	8	11	1	504	604	404	
			SSP304	0-3	132	135															I	503	603	403	
	ARAPUCA-1	Hamamatsu	SSP304	4-7	136	139		002-0006-FL14	SensL-A1	SSP202	0-3	60	63		403-003-0054-FLP12	SensL-A1	SSP102	0-3	12	15	I	502	602	402	
			SSP304	8-11	140	143															I	501	601	401	
ſ	002-0042-IU52	SensL-A1	SSP302	0-3	108	111	Ι,	001-0044-IU18	SensL-A1	SSP202	4-7	64	67		403-001-0006-IU49	SensL-A1	SSP102	4-7	16	19	1		_	_	
	002-0056-FL30	SensL-A1	SSP302	4-7	112	115		002-0012-FL19	SensL-A1	SSP202	8-11	68	71		403-003-0064-FLP13	SensL-A1	SSP102	8-11	20	23		USRaS	MSRaS	DSRaS	
(002-0047-IU17	SensL-A1	SSP302	8-11	116	119		002-0027-IU12	SensL-A1	SSP203	0-3	72	75		403-001-0061-IU04	SensL-A1	SSP103	0-3	24	27		304	204	104	
	002-0054-FL38	SensL-A1	SSP303	0-3	120	123		002-0015-FL21	SensL-A1	SSP203	4-7	76	79		403-001-0042-FLP4	SensL-A1	SSP103	4-7	28	31		303	203	103	
Bottom of Cruce	002-0015-51-04	Senst-A1	55P303	4-7	124	127		002.0035.51.05	SensL-A1	SSP203	8-11	80	83 97		403-001-0025-1021	Senst-A1	SSP103	8-11	32	35		302	202	102	
BOLLOM OF CRYO	003-0015-FL04	Senst-C1	332303	8-11	128	131		003-0025-FL06	Senst-A1	55F2U4	0-3	64	6/	-	403-003-0020-115	Senst-A1	35r104	0-3	30	29	I	301	201	101	
24	ļ.				Ch	ris M	acias	I Photon E)etector	Syste	m Info	@ Prot	oDU	NEIM	ay, 2018								DU		

APA5

APA6

APA4

Signal parameters

To distinguish neutrons a few signal shape parameters are used:

- Rising time (from 10% to 90% of maximum amplitude);
- Full width at half maximum;
- Prompt fractions;

Beam instrumentation

Particle production, transport, and identification in the regime of 1-7 GeV/c

A. C. Booth,¹ N. Charitonidis,^{2,*} P. Chatzidaki,^{2,3,4} Y. Karyotakis,⁵ E. Nowak,^{2,6} I. Ortega-Ruiz,² M. Rosenthal,² and P. Sala^{2,7}

TOF system allows to ID beam particles below 3 GeV/c and Cherenkov detectors perform ID for momenta > 3 GeV/c

Neutron energy in DUNE

Understanding the energy resolution of liquid argon neutrino detectors

Alexander Friedland¹,^{*} and Shirley Weishi Li¹,[†] ¹SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025 (Dated: January 21, 2019)

FIG. 8. Energy distribution of the neutrons in 4 GeV neutrino interactions. The top histogram corresponds to prompt neutrons, which come from the nucleus struck by the neutrino; the bottom one corresponds to secondary neutrons, which are knocked out of other argon nuclei as the event develops in the detector.

FIG. 9. Energy breakdown of neutrons at different energies. Shown are the energy fractions that go to ionization (*solid blue*) and to nuclear breakup (*dashed orange*). Also shown is the fraction of the ionization energy in particles above the CDR thresholds (*dashed blue*). The ionization charges are given before charge recombination.

Processed runs

