Study of PD Calibration with Pulsed Neutron Source

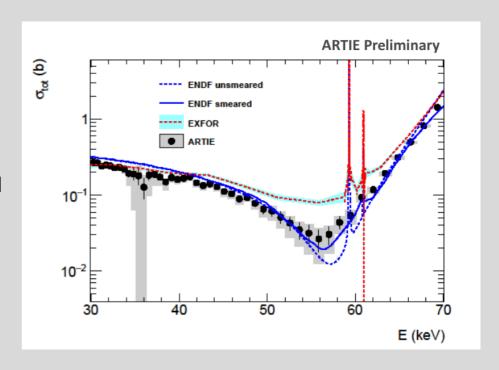
Walker Johnson, Franciole Marinho, Laura Paulucci, Ajib Paudel, Jingbo Wang, Flavio Cavanna

SOUTH DAKOTA MINES An engineering, science and technology university

PNS Working Group Meeting

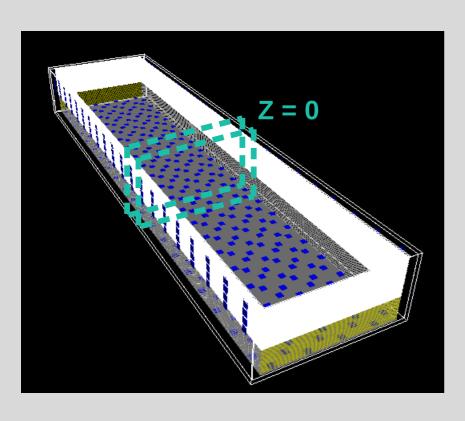
June 7, 2022

Overview


- Neutrons for Calibration
- Pulsed Neutron Source
- PNS for Photo-Detector Calibration

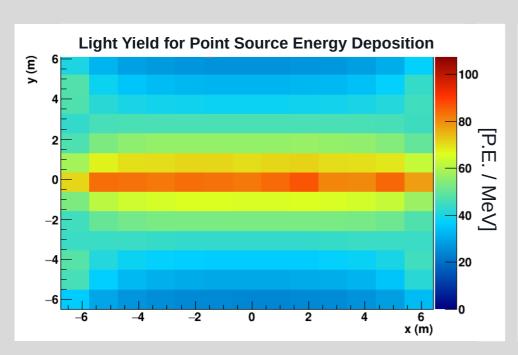
Walker Johnson

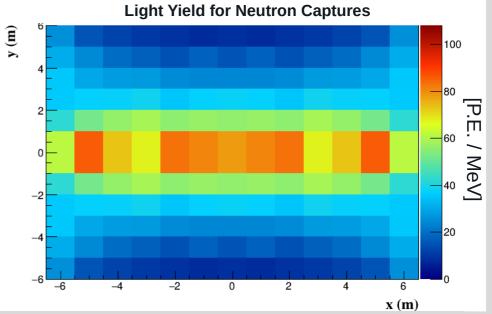
Neutrons for LArTPC Calibration


- Neutron capture on Ar-40 produces a 6.1 MeV gamma cascade
 - This well defined energy deposition can be used as a standard candle for calibration
- Neutrons can travel far distances in liquid Argon
 - A dip in the elastic scattering cross-section at 57 keV → ~30m attenuation length
 - Neutrons above this energy are likely to fall into the dip
- The total neutron capture cross section was measured in the ARTIE experiment to confirm this dip

$$n + {}^{40}Ar \rightarrow {}^{41}Ar + 6.1 \,MeV$$

Walker Johnson


Simulation



- Uses Geant4 Vertical Drift geometry from Franciole Marinho and Laura Paulucci
- Generate neutron captures in a 1m slice of the detector with uniform distribution
- Each 1m³ voxel contains 15 neutron captures
- Count the photons hitting the photodetectors, and convert to photoelectrons using the total efficiency
 - Do this for the neutron captures in each voxel
 - Generate a map of LY/MeV as a function of voxel position

Results

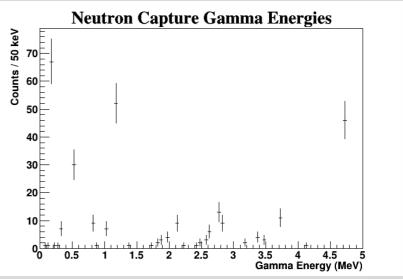
- Compared to the point-source map we see similar overall behavior
- The light yield is lower near the edges of the detector
 - Likely due to the relatively wide (~50cm radius) distribution of the gammas from neutron captures.

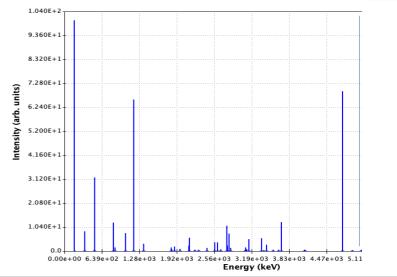
Light Yeild map created by **Hamza Amar** and **Michel Sorel** using point-source optical photons

Conclusions & Next Steps

- Further studies are needed to demonstrate the feasibility of using the Pulsed Neutron Source for Vertical Drift Photo-Detector calibration
- The first simulation results look promising

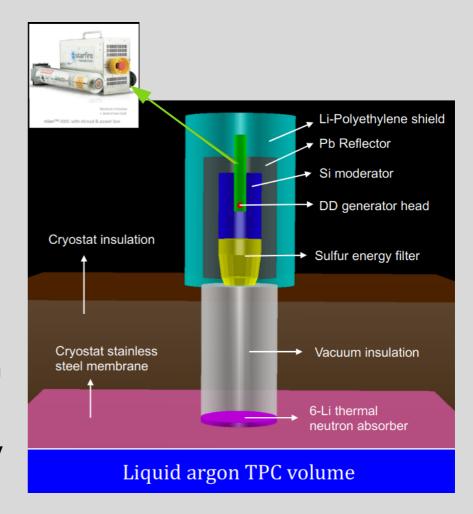
Next Steps


- Move to full LArSoft simulation and reconstruction
 - Ajib is currently working on this
- Possibly test the PNS at the ColdBox


Questions?

Walker Johnson

Physics List


- Using the EM Livermore model
- Added hadronic processes to the physics list
 - Elastic
 - Inelastic
 - Capture
 - Fission
- This includes a modified neutron capture process for Argon which produces the correct gamma cascades
 - Geant4's standard physics packages do not properly produce the gamma cascade

Pulsed Neutron Source (PNS) TDR Design

- Technical Design Report for the PNS:
 - Deuterium-deuterium neutron generator
 (DD generator): 2.5 MeV neutrons
 - Si moderator: 2.5MeV → <1MeV</p>
 - Sulfer Energy Filter: Select 73 keV neutrons
 - Pb reflector: increase neutron yield
 - 6-Li absorber: supress thermal neutrons
 - Li-Polyethylene shield: radiation protection
- It may not be necessary to moderate and filter the neutrons to a low energy
 - PD-1 test uses a simplified design

