R&D and demonstrators for THEIA

++ DUNE Phase-II Working Group Call ++ June 12, 2023 +++ Michi Wurm (Mainz) ++

Hybrid Cherenkov/Scintillation Detector

\rightarrow Enhanced sensitivity to broad physics program

Water/Liquid Scintillator Neutrino Detectors

Michael Wurm (Mainz)

THEIA R&D

R&D: Water-based liquid scintillators (WbLS)

→ properties of target medium can be adjusted to physics goal
 → water content offers additional options for metal loading

R&D : Sensors for Separating Chertons and Scintons

Scintillation

LAPPDs tts~60ps

Dichroicons spectral sorting

PMT granularity

180° angle

50°

90°

THEIA25 as DUNE Module of Opportunity

THEIA : Phased Physics Program

scintillator properties will be adjusted to physics requirements,

e.g. 1% WbLS \rightarrow 10% WbLS \rightarrow slow scintillator

Primary physics goal	Reach	Exposure/assumptions
Long-baseline oscillations	>5 σ for 30% of δ_{CP}	524kt-MW-year
Nucleon decay p→⊽K+	T>3.8 x 10 ³⁴ year	800 kt-year
Supernova burst	<1(2)° pointing 20K(5K) events	100(25)kt, 10kpc SN
Diffuse Supernova Neutrino	5σ	l 25kt-year
CNO neutrinos	<5(10)%	300(62.5)kt-year
Geoneutrinos	< 7 %	25 kt-year
Οννβ	T _{1/2} > 1.1 x 10 ²⁸ year (90%C.L.)	800 kt-year (Multi-tonne loaded LS in suspended vessel search)

Development Path of Hybrid Detectors

Program for 1-ton Demonstrators (1/3)

For Long-Baseline Experiments

demonstrate improved detector performance compared to pure water Cherenkov detector

- scintillation makes recoil hadrons visible
 - \rightarrow better energy estimator
 - \rightarrow better vertex reco
- scintillation/Gd-loading offers handle to detect final-state neutrons \rightarrow better energy estimation (range?)
- accurate event timing \rightarrow neutrino energy (via TOF of π/K in decay pipe)

sensitivity of WbLS module

60 E

50 E

40

30

20

0

Program for 1-ton Demonstrators (2/3)

For Low-Energy Detection

demonstrate added value of hybrid detection cf. water and liquid scintillator

- Particle ID using Cherenkov/scintillation ratio (reject protons and α's)
- Sub-MeV directional reconstruction using cumulative event distributions (CID)
- Improved directional reconstruction for >MeV neutrinos due to isotropic light component
- Neutron tag for SN neutrinos
 → improved pointing capabilities

Cherenkov/scintillation ratio for BG discrimination (here: diffuse SN v's)

Program for 1-ton Demonstrators (3/3)

For Neutrinoless Double-Beta Decay

show path to >10-ton scale experiments with excellent background discrimination

- high metal loading factors in water while maintaining high light yield & transparency
- use directionality to suppress solar ⁸B-v background
- discrimination of e⁻ vs. e⁺ vs. γ events based on Cherenkov/scintillation ratio
- identify 2β signals vs. 1β backgrounds based on isotropy of Cherenkov light emission

WbLS properties and loading

basic properties by now well-understood based on various lab-scale experiments

- light yield (vs. organic fraction)
- fluorescence times (tunable)
- transparency (mycel size)

effort turning towards loading of WbLS with **good metal ions**

- for neutron detection: Gd
- for solar neutrino detection: Li
- for 0vββ: Ca, Kr, Te
- and removing ionic impurities
- Fe ions leeched from vessel walls
- online purification (nano-filtration) circulating the WbLS

Intensity (mV)

otal

BNL prototypes

Reject 2

Reject 1

Pump 1

basic concept: separate the organic components from water in order to clean the water

NF

array

Basic procedure

1) remove the micelles from the liquid without disrupting them

2) remove "free" surfactant from the permeate of NF array 1

- pass the "bad" ions to a standard water purification system for removal
- 4) but keep the good ions

 \rightarrow mostly implemented for the BNL 1-ton demonstrator

Permeate 1

Tank

1

 \rightarrow meanwhile constructing 30-ton prototype

Feed 1

BNL 1-ton

Detector

Pump 2

Perr

NF

array

2

Feed 2

00

Dichroicon Tests at CHESS

- spectral sorting by focusing either short or long wavelengths to center PMT
- underlying PMT array records deselected photons
- selection purity C/(C+S) based on fit to photon time distribution

Short concentrating

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment

27-ton (Gd-loaded) Water Cherenkov Detector running in the Fermilab BNB neutrino beam

- measurement of GeV neutrino differential cross-sections and neutron multiplicity
- physics data taking started in early 2021
- R&D program for new technologies
 → Gd-water → LAPPDs → WbLS

ANNIE Detector Layout

Michael Wurm (Mainz)

LAPPD Performance – s.p.e. response

LAPPD performance tests

- lab tests: excellent time and spatial resolution
- on-site tests (Lab-6) in dark box with final ANNIE electronics: <200 ps

LAPPD Performance – C/S separation

LAPPD performance test in CHESS

→ timing is sufficient to separate Cherenkov from fast scintillation (τ ~2ns) component!

LAPPDs in ANNIE

- LAPPDs are mounted with PSEC electronics directly attached in waterproof housing
- LAPPD #0 installed in March 2022, detected first light from neutrinos
- LAPPDs #1 and #2 installed in February 2023, data aquisition with multiple LAPPDs
- → currently: time synchronisation and combination of LAPPD with PMT data
- LAPPDs #3 and #4 underway

ANNIE+SANDI: First WbLS test deployment

removed in May after taking 2 months worth of beam data

SANDI vessel & support frame inserted in Jan

Insertion of vessel inside ANNIE tank in March

SANDI Acyrlic Vessel

- cylinder holding 365 kg of WbLS submerged in ANNIE water tank
- WbLS produced at BNL

\rightarrow goals of first run:

- detect scintillation of hadrons
- use LAPPDs for C/S separation
- detect neutron capture on H
- show general compatibility for second GdWbLS run

EOS: WbLS performance demonstrator

- Stand-alone hybrid detector optimized for MeV energy reconstruction
- Demonstrate event reconstruction using hybrid Cherenkov + scintillation signatures
- Validate models to support large-scale detector performance predictions
- Provide a flexible testbed to demonstrate impact of novel technology: targets, photon detectors, readout, reconstruction algorithms
- ightarrow Start of installation this summer at UC Berkeley
- ightarrow Closely coupled to 30-ton demonstrator at BNL for WbLS production & stability

EOS Detector Layout

- stand-alone hybrid detector
- target mass: 4 ton of water, WbLS or slow scintillator
- 200 fast 8" PMTs with tts of 900 ps (FWHM)
- CAEN V1730 readout
- plus deployment of 10 dichroicons for spectral sorting

Progress on EOS Assembly

Good progress over the last months

- most of the design work done, all long lead-time items ordered
- steel tank and acrylic vessel delivered
- half of 200 very fast 8" Hamamatsu PMTs received, testing on-going
- digitizers & HV boards received
- ightarrow detector filling planned for early 2024

EOS outer steel and inner acrylic tanks

Dichroicon (spectral sorting device) *' PMT ("Cherenkov PMT") Io" PMT ("Scintillation PMT") Magnetic shield Univer PMT array with integrated Dichroicons

Conclusions

hybrid Cherenkov/scintillation detectors offer a large dynamic range, enhanced event reconstruction and new background discrimination capabilities

good progress of R&D on individual components (WbLS, LAPPDs, Dichroicons ...)

- ton-scale experiments ANNIE/SANDI, EOS & BNL prototypes demonstrate combination of components and identify challenges appearing at larger scales
- \rightarrow will provide the full range of technical information required for a THEIA25 design