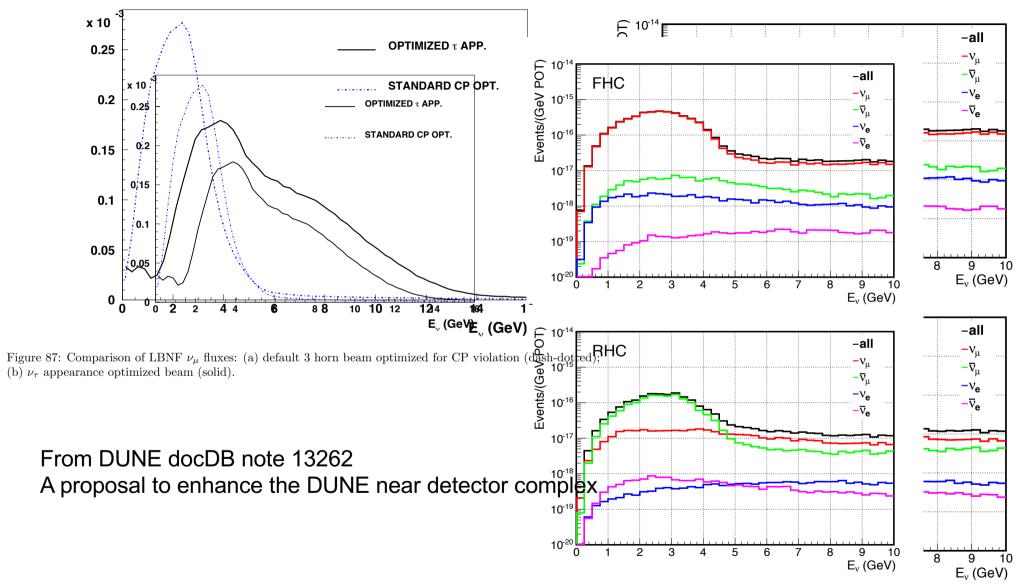
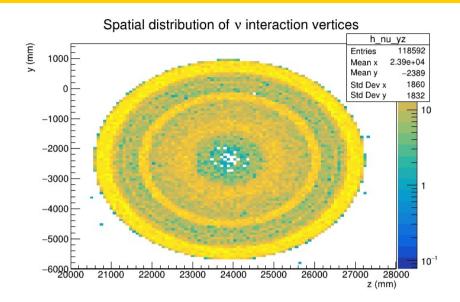
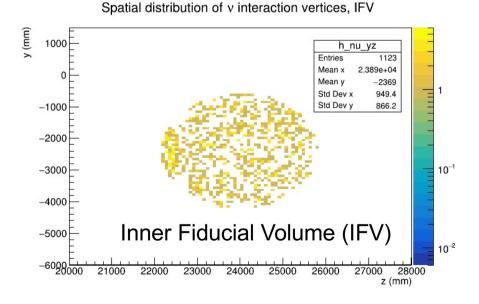
Studies for the optimization of the working point of the SAND calorimeter read-out electronics in DUNE

Antonio Di Domenico, Paolo Gauzzi, Daniele Truncali Dipartimento di Fisica, Sapienza Università di Roma and INFN-Roma, Italy

ECAL WG Meeting – 12 June 2023

Neutrino energy spectrum in DUNE

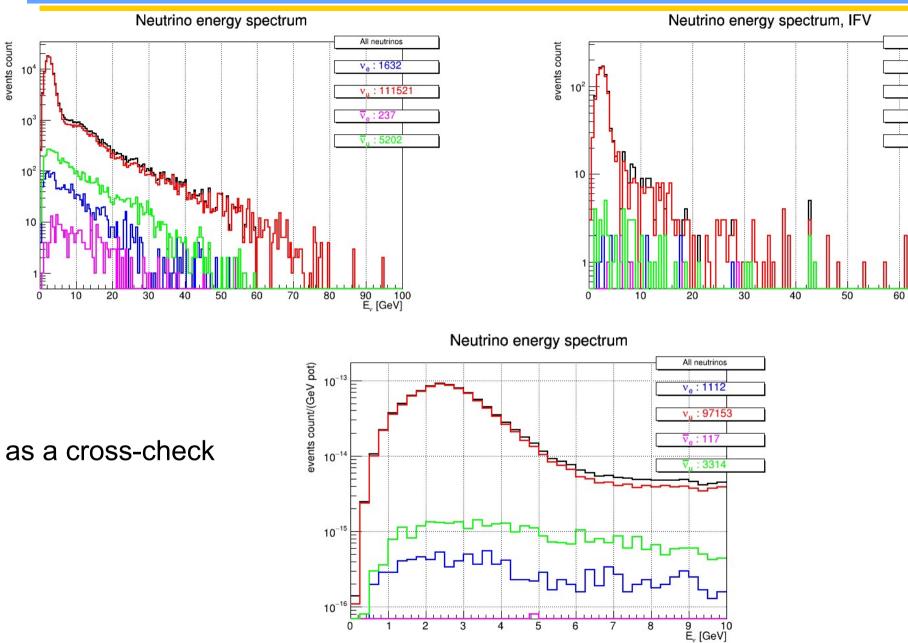

Figure 89: Energy spectra of CC interacting neutrinos in the internal LAr target, having a mass of 1.01 ton, and considering a 120 GeV proton beam in both FHC and RHC modes.

SAND MC simulation

- Analyzed sample: sand-events.*.digi.root and sand-events.*.edep.root (thanks to Matteo Tenti)
- 100 files
- Total evts = 118592
- Total p.o.t = 1.011×10^{17}
- p.o.t./spill = 7.5×10^{13} at 1.2 MW beam power
- corresponding to ~ 30 minutes of data taking in FHC mode
- Inner Fiducial Volume (IFV) defined at a distance of 20 cm from ECAL internal surface

All neutrinos

v_e:15


v_u : 1050

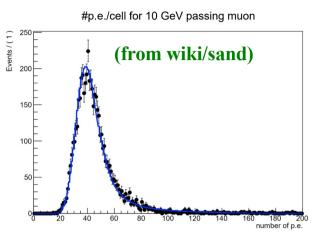
 \overline{v}_{a} ; 7

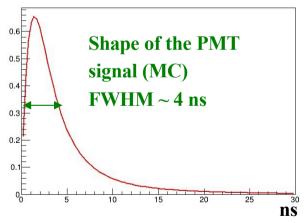
v. : 51

70 E, [GeV]

Neutrino energy spectrum in SAND MC

events count

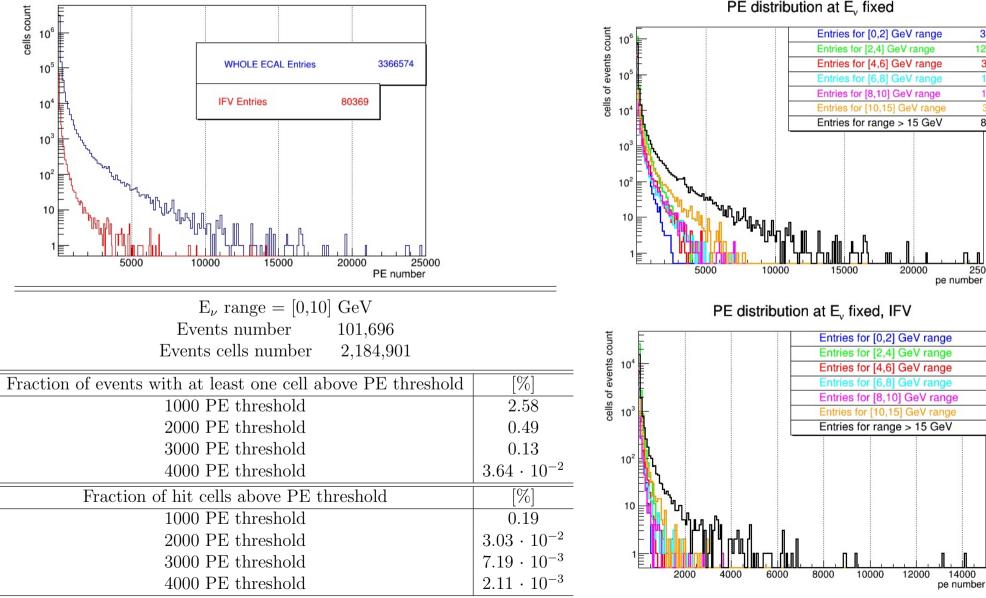



Digitization of ECAL similar to KLOE MC:

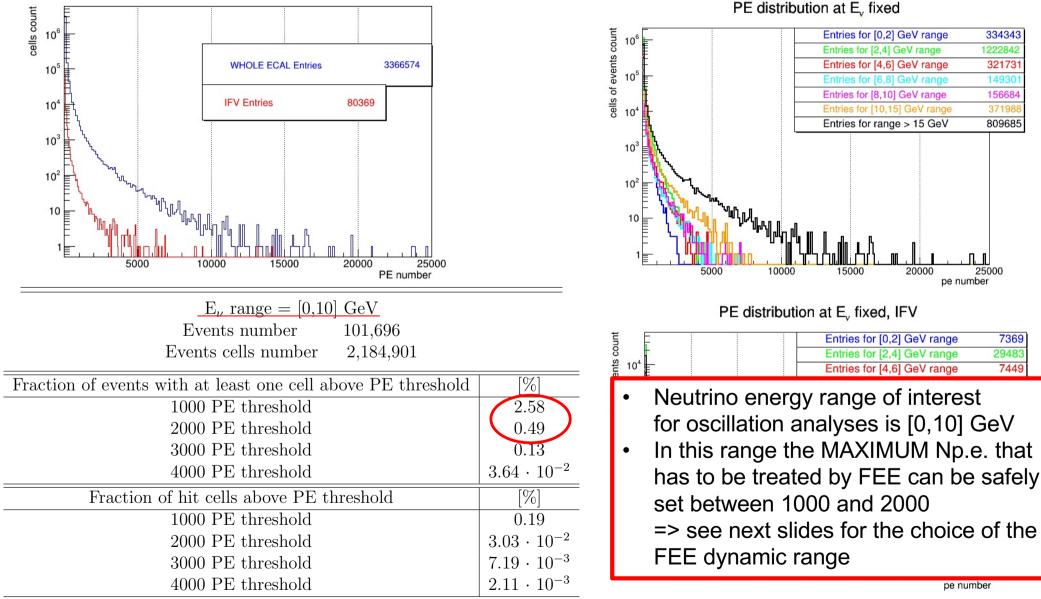
 Deposited energy in the cells propagated to PMTs with double exp. attenuation curve

 $f(x) = Ae^{-\frac{x}{\lambda_1}} + (1-A)e^{-\frac{x}{\lambda_2}}$

- Converted into p.e. number ⇒ 18.5 p.e./MeV of <u>deposited energy</u> (MIP at the module center ~ 40 p.e.)
- Light yield ~ 1 p.e./MeV of total energy of the particle
- Threshold = 2.5 p.e.
- Constant fraction discriminator at 15% of the signal
- Multihit TDC simulation (30 ns integration time + 50 ns dead time)

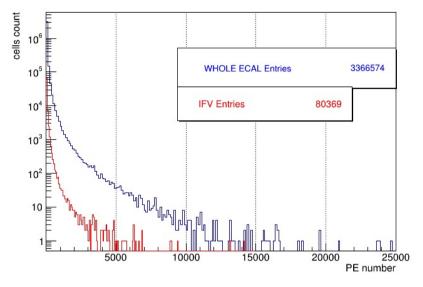


Np.e. distributions

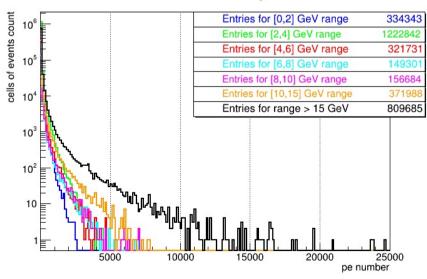

Np.e. distributions

pe number

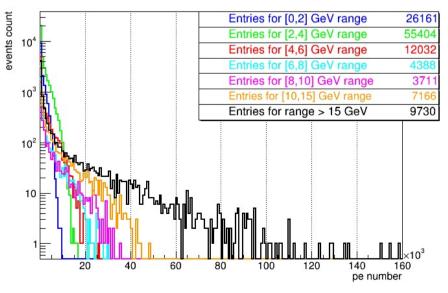
pe number



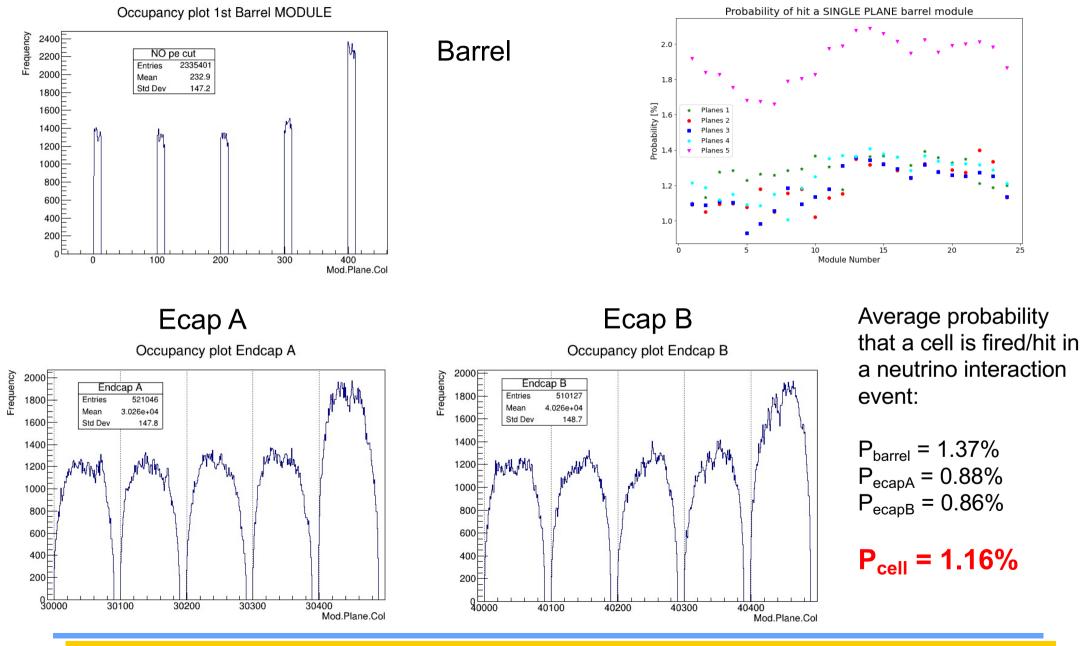
PE distribution at E., fixed


Np.e. distributions





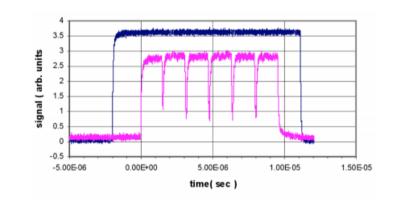
PE distribution at E_v fixed



Total PE release

events count

Cell occupancy plots and hit probability

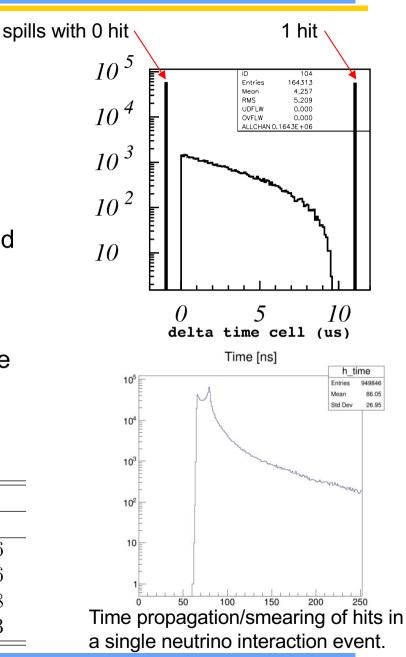


Beam power 1.2 MW 7.5 x 10^{13} protons extracted every 1.2 s at 120 GeV 1.1 x 10^{21} pot/year

Spill time structure

- 9.6 µs per spill
- 6 batches, 84 bunches/batch
- 2 empty bunches
- 1 bunch: Gaus(σ = 1.5 ns)
- ∆t bunches = 19 ns

Event rates expected in SAND ~ 84 interactions/spill ≲1 interaction/spill in the SAND fiducial volume


Pile-up probability

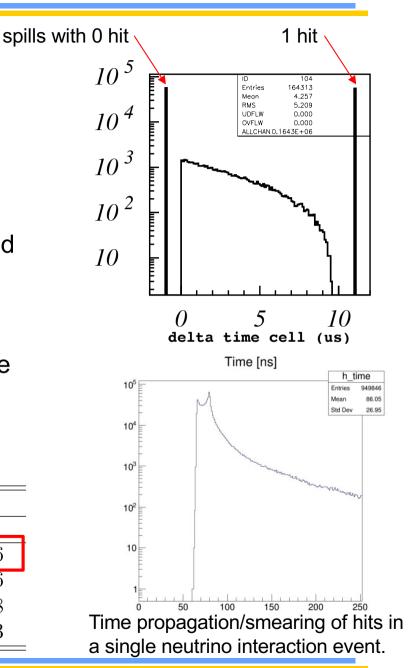
The beam time structure is reconstructed to simulate the structure of the neutrino interaction event and calculate the pileup probability that, given a PMT signal, a second signal arrives within a fixed time window (TW) after the first signal.

The times of N interactions per spill (in average N=84) are extracted uniformly between 0 and 9.6 µs. The time difference between two consecutive interactions is calculated for all spills, following an exponential distribution with $\tau_{spill} \simeq$ 114 ns. From this, the distribution of time differences for a single cell with a probability to be hit of P_{cell} = 1.16% is evaluated, and then the pile-up probabilities for different time windows are also evaluated, TW = 50, 100, 150, 200 ns.

$\mathbf{P}_{\mathbf{CELL}}$ [%]	1.16	1.5	2.0	1.16	1.5	2.0
Time window [ns]						
50	0.67	0.90	1.28	0.64	0.86	1.36
100	1.33	1.81	2.52	1.32	1.71	2.56
150	1.95	2.71	3.72	1.91	2.60	3.78
200	2.59	3.58	4.87	2.52	3.48	4.93

before smearing

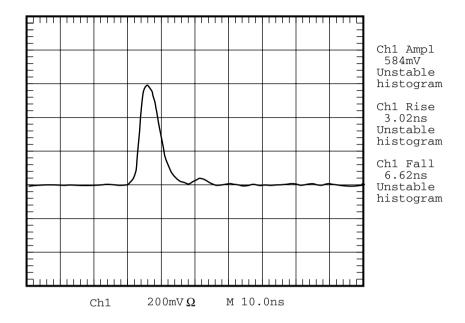
after smearing

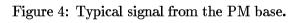

Pile-up probability

The beam time structure is reconstructed to simulate the structure of the neutrino interaction event and calculate the pileup probability that, given a PMT signal, a second signal arrives within a fixed time window (TW) after the first signal.

The times of N interactions per spill (in average N=84) are extracted uniformly between 0 and 9.6 µs. The time difference between two consecutive interactions is calculated for all spills, following an exponential distribution with $\tau_{spill} \simeq$ 114 ns. From this, the distribution of time differences for a single cell with a probability to be hit of P_{cell} = 1.16% is evaluated, and then the pile-up probabilities for different time windows are also evaluated, TW = 50, 100, 150, 200 ns.

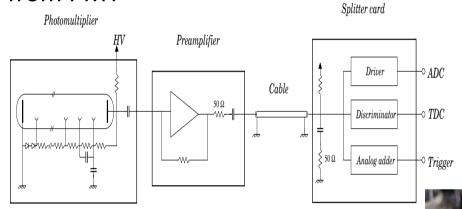
$\mathrm{P}_{\mathrm{CELL}}$ [%]	1.16	1.5	2.0	1.16	1.5	2.0
Time window [ns]				••		
50	0.67	0.90	1.28	0.64	0.86	1.36
100	1.33	1.81	2.52	1.32	1.71	2.56
150	1.95	2.71	3.72	1.91	2.60	3.78
200	2.59	3.58	4.87	2.52	3.48	4.93

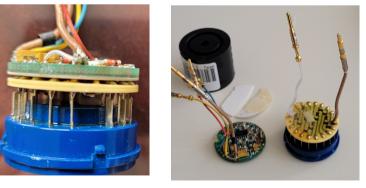

before smearing



after smearing

PMT signal and discriminator threshold in KLOE





Constraints:

- minimum discriminator threshold 4-5 mV
- maximum HV for PMs divider is 2300 V typical HV 1700-1800 => G~1-3 x 10⁶
- preamplifier linear (within 0.2%) for signals
 up to 4.7 V (gain preamp ~ 2.5)
- => 1.74 V at discriminator level after
- 12-15 m long cables and termination

Constant fraction discriminators. Effective thresholds are in the range 4–5 mV: They correspond to signals originated by 3–4 photoelectrons or a 3–4 MeV photon at 2 m from PMT

thanks to A. Balla and P. Ciambrone

Choice of the dynamic range

The dynamic range in terms of N_{pe} can be evaluated using the following constraints for the FEE after the PMT:

- Minimum discriminator/digitizer threshold V_{TH} = 5 mV
- Preamplifier linearity (within 0.2%) range = [0, 4.7] V => V_{preamp}(max) = 4.7 V
- preamp transimpedance gain G= 250 V/A => I_{peak}(max)=19 mA => max signal charge Q(max)=133 pC; from Q = e N_{pe} G_{PM} => (N_{pe} G_{PM})(max) = 83·10⁷
- $G_{TOT} = G_{PM} G_{preamp}$ with $G_{preamp} \simeq 2.5$
- 12m long cable attenuation: $C_{ATT} = 0.74$
- MAX single pulse amplitude at the discriminator/digitizer input is: V_{dis}(max) = V_{preamp}(max) • 0.5 • C_{ATT}= 1.74 V
- signal ampl = $V_{dis}(max)/N_{pe}(max)$
- $N_{pe}(min)=V_{TH}/(signal ampl) => N_{pe}(max)/N_{pe}(min) = V_{dis}(max)/V_{TH}$

G_{PM}	G_{tot}	$N_{pe}(\max)$	signal	$N_{pe}(\min)$	MeV
$(\times 10^5)$	$(\times 10^{6})$		amplitude	$V_{TH} = 5 \text{ mV}$	at module center
			(mV/pe)		
4.2	1.04	~ 2000	0.87	~ 6	6.0
5.5	1.38	~ 1500	1.16	~ 4	4.0
8.3	2.1	~ 1000	1.74	~ 3	3.0
10	2.5	~ 800	2.18	~ 2	2.0

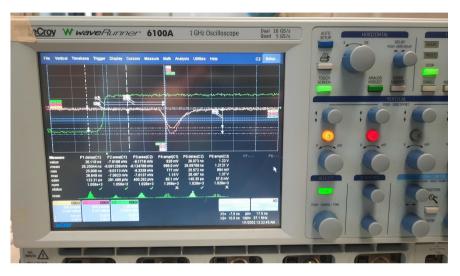
Choice of the dynamic range

The dynamic range in terms of N_{pe} can be evaluated using the following constraints for the FEE after the PMT:

- Minimum discriminator/digitizer threshold V_{TH} = 5 mV
- Preamplifier linearity (within 0.2%) range = [0, 4.7] V => V_{preamp}(max) = 4.7 V
- preamp transimpedance gain G= 250 V/A => I_{peak}(max)=19 mA => max signal charge Q(max)=133 pC; from Q = e N_{pe} G_{PM} => (N_{pe} G_{PM})(max) = 83·10⁷
- $G_{TOT} = G_{PM} G_{preamp}$ with $G_{preamp} \simeq 2.5$
- 12m long cable attenuation: $C_{ATT} = 0.74$
- MAX single pulse amplitude at the discriminator/digitizer input is: V_{dis}(max) = V_{preamp}(max) • 0.5 • C_{ATT}= 1.74 V
- signal ampl = $V_{dis}(max)/N_{pe}(max)$
- $N_{pe}(min)=V_{TH}/(signal ampl) => N_{pe}(max)/N_{pe}(min) = V_{dis}(max)/V_{TH}$

G_{PM}	G_{tot}	$N_{pe}(\max)$	signal	$N_{pe}(\min)$)	MeV
$(\times 10^5)$	$(\times 10^{6})$		$\operatorname{amplitude}$	$V_{TH} = 5 \text{ mV}$		at module center
			(mV/pe)			
4.2	1.04	~ 2000	0.87	~ 6		6.0
5.5	1.38	~ 1500	1.16	~ 4		4.0
8.3	2.1	~ 1000	1.74	~ 3		3.0
10	2.5	~ 800	2.18	~ 2		2.0

PMT system test at LNF

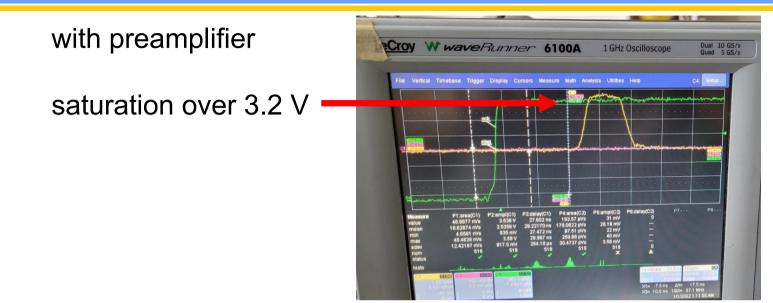

PMT system test with CAEN LED driver (wavelength ~ 400 nm) and scint. fiber splitter

two PMTs, one for reference



with preamplifiers a lower gain is needed, which is beneficial for PMT lifetime

no preamplifier



with preamplifier

DUNE

Test of preamp saturation

In this specific case (negligible cable length) we expect: $V_{dis}(max) = V_{preamp}(max) \cdot 0.5 = 2.35 V$

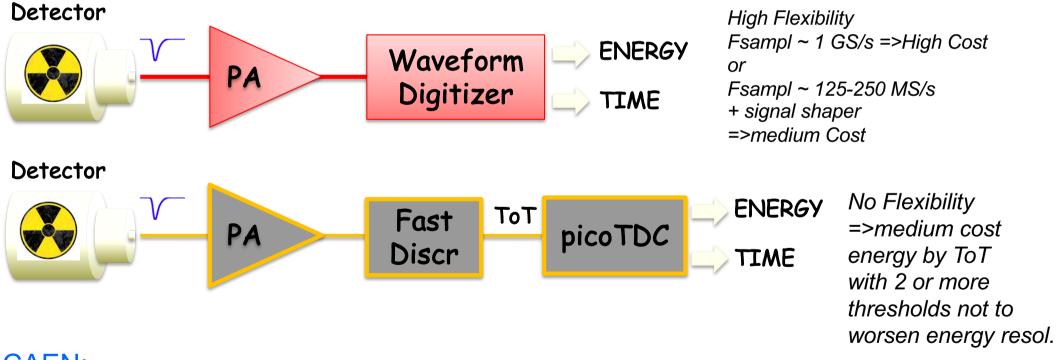
Assuming to increase $V_{preamp}(max)$ by 15% while keeping linearity at an acceptable level, e.g. 1% (to be tested), we get:

```
V_{preamp}(max) = 5.4 V
V_{dis}(max) = V_{preamp}(max) \cdot 0.5 = 2.7 V
```

"Stretching" the choice of the dynamic range

Assuming:

- to increase $V_{preamp}(max)$ by 15% => $V_{preamp}(max)$ = 5.4 V
- $(N_{pe} G_{PM})(max) = 95 \cdot 10^7$
- $V_{dis}(max) = V_{preamp}(max) \cdot 0.5 \cdot C_{ATT} = 2.0 V$
- to have a very low noise environment as in KLOE => lowering (halving) the minimum discriminator/digitizer threshold to V_{TH}= 2.5 mV


$\begin{array}{c}G_{PM}\\(\times 10^5)\end{array}$	$\begin{array}{c} G_{tot} \\ (\times 10^6) \end{array}$	$N_{pe}(\max)$	signal amplitude (mV/pe)	$N_{pe}(\text{min})$ $V_{TH} = 2.5 \text{ mV}$	MeV at module center
$\begin{array}{c} 4.8 \\ 6.4 \\ 9.5 \end{array}$	$1.2 \\ 1.6 \\ 2.4$	$\sim 2000 \\ \sim 1500 \\ \sim 1000$	1.0 1.3 2.0	$\begin{array}{c} \sim 3 \\ \sim 2 \\ \sim 1 \end{array}$	$3.0 \\ 2.0 \\ 1.0$

 Different dynamic ranges can be implemented changing G_{PM} => the final choice should be a compromise between an affordable level of events with energy saturated cells, depending on N_{pe}(max), and an acceptable neutron detection efficiency, depending on N_{pe}(min).

Constraints on signal dynamic range see previous slides

Two possible read-out schemes:

CAEN:

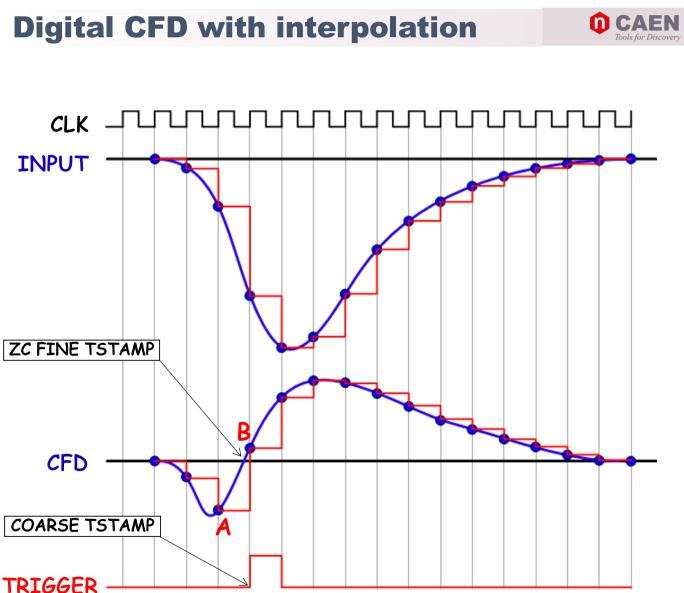
possible ready-to-use solution maintaining KLOE energy and time performance

Choice of FEE for SAND/ECAL

Digitizer solution:

 $V_{signal}(max) = 2 V$ $V_{signal}(min) = O(0.1) mV$ => no problems to set V_{TH} and $V_{signal}(max)$ to match $V_{dis}(max)$

Best choice, high cost: 1 GS/s digitizer


=> 1 ns: 4-5 time measurements on the rising edge of the 14 ns base signal to preserve time resolution

Lower cost choice:

A shaper is needed to stretch the signal to use a lower cost digitizer, 125 or 250 MS/s => 8 or 4 ns

Optimal choice:

250 MS/s digitizer => 4 ns stretch x4 the signal from 14 to 56 ns to keep the pile-up at the minimum (1%).

Conclusions

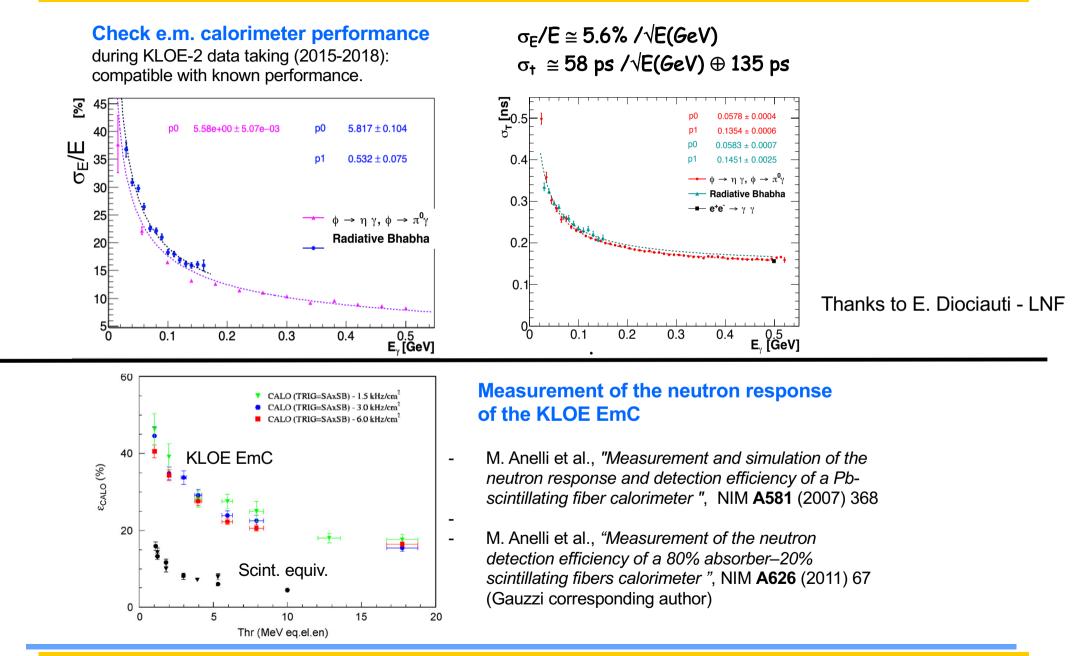
Studies for the optimization of the working point of the SAND calorimeter read-out electronics have been performed.

The MC simulation of the ECAL digitized response has been used to study the dynamic range and pile-up of the signals.

The preamplifiers of PMT bases are well compatible with the proposed FEE solutions, given that the maximum amplitude of signals accepted before digitalization is around 2 V, i.e. $V_{signal}(max) = 2 V$.

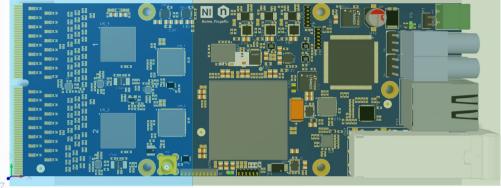
Keeping the preamplifiers has the advantage (i) to simplify the ECAL dismounting and test phases, and (ii) to keep the PMTs working point at a lower gain and HV level, beneficial for their lifetime.

It has to be tested how much the preamp linearity is worsened when extending $V_{preamp}(max)$ from 4.7 to 5.4 V (most likely it will remain within 1%).


In the long term, it would be necessary to design and build anew spare bases (with new components), to cope with possible long-term degradation of electronic components.

A possible solution for the FEE that could constitute a good compromise between cost and performance is the use of a 250 MS/s digitizer with a x4 signal stretcher in front. This solution could be provided by CAEN ready-to-use. A meeting with CAEN will be organized soon to discuss more technical issues and costs of the possible solutions.

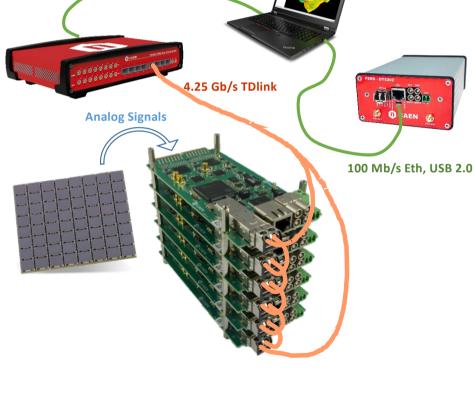
Spare


KLOE ECAL performance in KLOE-2 and with neutron

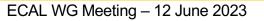
V]

Choice of FEE for SAND/ECAL

FERS: a scalable readout system



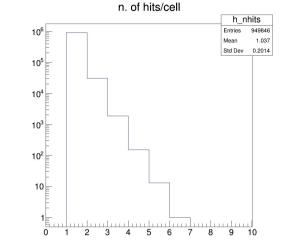
DETECTOR SPECIFIC

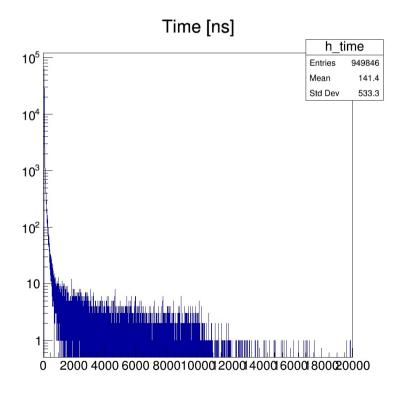

COMMON INFRASTRUCTURE

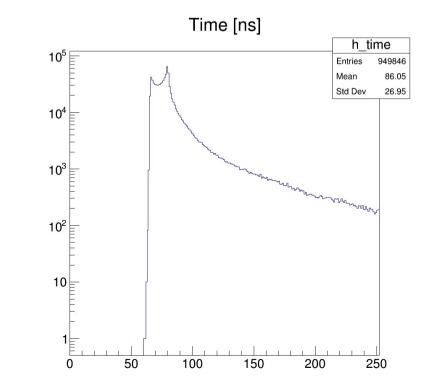
- **FERS:** Front End ASIC + ADC/TDC + Scalable Readout Infrastructure
- Easy integration of new ASICs
- **Scalability:** from single stand alone version for evaluation, to 10k/100k channels with same electronics
- TDL: daisy chainable optical link protocol with data+sync
- Readout Tree: 1 link = 16 FERS units 1 Concentrator = 8 links = 128 FERS = 8k/16k channels Multiple Concentrators for unlimited readout...

picoTDC (FERS A5203) + ToT solution

1/10 Gb/s Eth, USB 3.0

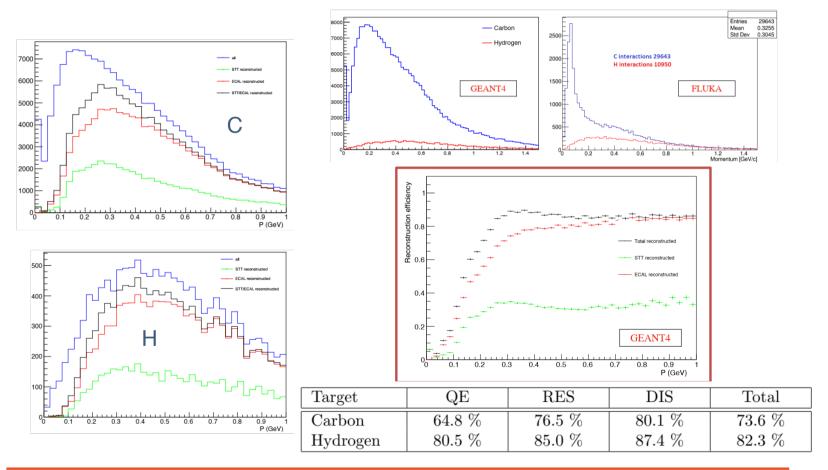



Time simulation


• TDC Multihit simulation: integration time 30 ns (starting from first p.e. time) 50 ns dead time

٠

Constant fraction simulation: 15% of the total p.e. number



Neutron detection efficiency

thresholds 250 eV in STT and 1.1 p.e. in ECAL

10 19th May 2021 L. Di Noto I STT performances in SAND

