Introduction to Superconductivity

USQIS Summer School DOE National Quantum Information Science Research Centers

Jim Sauls

Hearne Institute of Theoretical Physics **Department of Physics and Astronomy** Louisiana State University, Baton Rouge LA

Niobium Superconducting RF (SRF) cavities

Niobium Superconducting RF (SRF) cavities

When cooled to temperatures well below the onset of superconductivity ...

Niobium SRF cavities are the most efficient Electromagnetic resonators that have been engineered

Niobium Superconducting RF (SRF) cavities

When cooled to temperatures well below the onset of superconductivity ...

Niobium SRF cavities are the most efficient Electromagnetic resonators that have been engineered

For quantum applications superconducting devices are cooled in Helium dilution refrigerators down to ~10 milli-Kelvin above absolute zero

Q-factor

Q-factor

$$Q \equiv 2\pi rac{ ext{energy stored}}{ ext{energy loss per cycle}}$$

$$Q \equiv 2\pi rac{ ext{energy stored}}{ ext{energy loss per cycle}}$$

$$Q \equiv 2\pi rac{energy stored}{energy loss per cycle}$$

Niobium superconducting RF cavities

Romanenko et al, Appl Phys Lett (2014)

$$Q \equiv 2\pi rac{energy stored}{energy loss per cycle}$$

100,000 times more efficient than Cu-based RF technology

Credits: wikipedia & Wave Ngampruetikorn

How efficient is $Q = 2 \times 10^{11}$?

Credits: wikipedia & Wave Ngampruetikorn

How efficient is $Q = 2 \times 10^{11}$?

Galileo's pendulum would still be swinging if it were as efficient as today's best oscillators

1600AD

Scientific work on pendulum started

Galileo

Pendulum

Credits: wikipedia & Wave Ngampruetikorn

Today

Lost ~20% of its amplitude

Galileo

Pendulum

 $f=1\,{
m Hz}$, $Q=2 imes 10^{11}$

SRF cavities provide an effective method to accelerate charged particles to high energies

SRF cavities provide an effective method to accelerate charged particles to high energies

Niobium superconducting RF cavities

Romanenko et al, Appl Phys Lett (2014)

SRF Cavities in the Quantum Regime

Niobium superconducting RF cavities

Romanenko et al, Appl Phys Lett (2014)

Niobium superconducting RF cavities

Romanenko et al, Appl Phys Lett (2014)

Photon lifetime of 2 seconds at ~20 mK – cf. 10ms in Al cavity Romanenko et al., Phys. Rev. Applied 13, 034032 (2020)

> **Nb-based cavities are being** developed for Quantum processors!

What else can we do with high Q Superconducting Resonators?

Look for rare events using microwave photons

Dark Matter Searches
 Tests of Low-Energy QED

What are the key properties of superconductors?

What are the key properties of superconductors?

How does superconductivity lead to high Q microwave resonators?

What are the key properties of superconductors?

Output the second se

What are some of the challenges to improving superconducting quantum devices for processors and sensors?

Leiden Institute of Physics

1908 - Liquified Helium - New Era in Low Temperature Physics

Leiden Institute of Physics

✓1908 - Liquified Helium - New Era in Low Temperature Physics
✓1910 - Low Temperature Resistance of Metals

1908 - Liquified Helium - New Era in Low Temperature Physics ✓1910 - Low Temperature Resistance of Metals 1911 - Discovered Superconductivity in Hg, Pb, Sn

Leiden Institute of Physics

Leiden Institute of Physics

✓ 1908 - Liquified Helium - New Era in Low Temperature Physics
✓ 1910 - Low Temperature Resistance of Metals
✓ 1911 - Discovered Superconductivity in Hg, Pb, Sn
✓ 1914 - Demonstrated Persistent Currents in a Pb ring.

"If science is to progress, we need is the ability to experiment, honesty in reporting results, intelligence to interpret the results."

Richard P. Lyuman

The Discovery of Superconductivity Kammerlingh Onnes Laboratory, Leiden, April 8, 1911

Physics Today, September 2010, by Dirk van Delft and Peter Kes

The experiment was started at 7am. Kamerlingh Onnes arrived when helium circulation began at 11:20am.

▶ The resistance of the mercury fell with the falling temperature. Soon after noon the gas thermometer denoted 5Kelvin.

Then the team started to reduce the vapor pressure of the helium, and it began to evaporate rapidly. They measured its specific heat and stopped at a vapor pressure of 197 mmHg (0.26 atmospheres), corresponding to about 3K.

Exactly at 4pm, the resistances of the gold and mercury were determined again. The latter was, in the historic entry, Mercury practically zero.

The Discovery of Superconductivity Kammerlingh Onnes Laboratory, Leiden, April 8, 1911

Physics Today, September 2010, by Dirk van Delft and Peter Kes

► The experiment was started at 7am. Kamerlingh Onnes arrived when helium circulation began at 11:20am.

► The resistance of the mercury fell with the falling temperature. Soon after noon the gas thermometer denoted 5Kelvin.

► Then the team started to reduce the vapor pressure of the helium, and it began to evaporate rapidly. They measured its specific heat and stopped at a vapor pressure of 197 mmHg (0.26 atmospheres), corresponding to about 3K.

Exactly at 4pm, the resistances of the gold and mercury were determined again. The latter was, in the historic entry, Mercury practically zero.

At the end of the day, Kamerlingh Onnes finished with an intriguing notebook entry: Dorsman [who had controlled and measured the temperatures] really had to hurry to make the observations. The temperature had been surprisingly hard to control. Just before the lowest temperature [about 1.8 K] was reached, the boiling suddenly stopped and was replaced by evaporation in which the liquid visibly shrank. So, a remarkably strong evaporation at the surface.

Without realizing the origin, the Leiden team had observed rapid heat transfer in the superfluid phase of liquid helium below 2.2 K discovered by J.F. Allen, A. D. Misener and P. Kapitza in 1937. [Nature, 141, 74 (1938)]

Elemental Superconductors

	IA																	0
1	1 H	IIA	KN	KNOWN SUPERCONDUCTIVE IIA IVA VA VIA VIA														
2	3 Li	4 Be	-															
3	11 Na	12 Mg	ШВ						GH P — YII -	HE 33	IB	IIВ	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 - Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 S n	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +AC	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110	111 1 111	112 112	s	UPER	RCON	оист	ORS	.ORG
	*La Sei	nthar ries	nide <mark>-</mark>	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 TD	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
+ Actinide Series				Th	Pa	Ű	»» Np	Pu	Am.	90 Cm	97 Bk	°° Cf	Es	Fm	Md	No	Lr	

- lowest T_c Elemental Superconductor: Rh: $T_c = 0.32 \times 10^{-3} K$
- ► Highest T_c Elemental Superconductor: Nb: $T_c = 9.33 K$
- ► Highest T_c Superconducting Compound: (Hg_{0.8}Tl_{0.2})Ba₂Ca₂Cu₃O_{8.33}: $T_c = 138K$

Elemental Superconductors

	IA																	0
1	1 H	IA	KN	ΙΟΪ	VN E	IYA	YΑ	ΥIA	γIIA	2 He								
2	3 Li	4 Be		BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE														10 Ne
3	11 Na	12 Mg	ШВ	IYB	VB		VIIB		ан н — үш-		IB	IIВ	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 S n	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	⁶⁰ Hg	81 TI	S2 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 08	109 109	110 110	111 1 111	112 112	5	UPE	RCON	оист	ORS	.ORG
	*La Sei	nthar ries	nide <mark>1</mark>	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	53 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Ƴb	71 Lu	
+ Actinide Series			Ģ	no Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 F m	101 Md	102 No	103 L r	

- lowest T_c Elemental Superconductor: Rh: $T_c = 0.32 \times 10^{-3} K$
- ► Highest T_c Elemental Superconductor: Nb: $T_c = 9.33 K$
- ► Highest T_c Superconducting Compound: (Hg_{0.8}Tl_{0.2})Ba₂Ca₂Cu₃O_{8.33}: $T_c = 138K$

Elemental Superconductors

	IA																	0
1	1 H	IIA	KN	IOV	VN E	IYA	٧A	ΥIΑ	VIIA	2 He								
2	3 Li	4 Be		BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE BLUE = AT AMBIENT PRESSURE														
3	11 Na	12 Mg	ШВ	IVB	EN = I VB	UNE 1 VIB	YIIB		GНР — Ү∥-	HE 55	IB	ШB	13 AI	¹⁴ Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	1 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 S n	51 Sb	52 Te	53 	54 Xe
6	55 CS	56 Ba	57 *La	72 Hf	⁷³ Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	60 Hg	81 TI	S2 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110	111 111	112 112	s	UPE	RCON	דסטס	ORS	.ORG
	*La Sei	ntha.r ries	ide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
+ Actinide Series				Th	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	98 Cf	Es	100 Fm	Md	No	103 Lr	

- lowest T_c Elemental Superconductor: Rh: $T_c = 0.32 \times 10^{-3} K$
- ► Highest T_c Elemental Superconductor: Nb: $T_c = 9.33 K$
- ► Highest T_c Superconducting Compound: (Hg_{0.8}Tl_{0.2})Ba₂Ca₂Cu₃O_{8.33}: $T_c = 138K$
High Tc Superconductors

$Y_{0.5}Lu_{0.5})Ba_2Cu_3O_7$	107 K
$(Y_{0.5}Tm_{0.5})Ba_2Cu_3O_7$	105 K
$(Y_{0.5}Gd_{0.5})Ba_2Cu_3O_7$	97 K
$Y_2CaBa_4Cu_7O_{16}$	97 K
$Y_3Ba_4Cu_7O_{16}$	96 K
$NdBa_2Cu_3O_7$	96 K
$Y_2Ba_4Cu_7O_{15}$	95 K
GdBa ₂ Cu ₃ O ₇	94 K
YBa ₂ Cu ₃ O ₇	92 K
$TmBa_2Cu_3O_7$	90 K
YbBa ₂ Cu ₃ O ₇	89 K
YSr ₂ Cu ₃ O ₇	62 K

http://phycomp.technion.ac.il/~ira/superconductors.html

http://superconductors.org/

$Bi_{1.6}Pb_{0.6}Sr_2Ca_2Sb_{0.1}Cu_3O_y$	115
$Bi_2Sr_2Ca_2Cu_3O_{10}^{***}$	110
Bi ₂ Sr ₂ CaCu ₂ O ₉ ***	110
$Bi_2Sr_2(Ca_{0.8}Y_{0.2})Cu_2O_8$	95-
$Bi_2Sr_2CaCu_2O_8$	91-

$(Hg_{0.8}Tl_{0.2})Ba_2Ca_2Cu_3O_{8.33}$	138]
$HgBa_2Ca_2Cu_3O_8$	133-1
$HgBa_2Ca_3Cu_4O_{10+}$	125-1
$HgBa_2(Ca_{1-x}Sr_x)Cu_2O_{6+}$	123-1
HgBa ₂ CuO ₄ +	94-9

 $+AT^2$ ▶ Resistivity of UPt₃ annealed at 900°C. $\rho =$ ho_0 $ightarrow T_c = 552 \,\mathrm{mK}$ Inset: Superconducting transition for a sample annealed at 800°C. The transition *width* is 1.3 mK.

 $+AT^2$ ► Resistivity of UPt₃ annealed at 900°C. $\rho =$ ho_0 $ightarrow T_c = 552 \,\mathrm{mK}$ Inset: Superconducting transition for a sample annealed at 800°C. The transition *width* is 1.3 mK.

► Resistivity of UPt₃ annealed at 900°C. $\rho =$ at 800°C. The transition *width* is 1.3 mK.

► Resistivity of UPt₃ annealed at 900°C. $\rho =$ at 800°C. The transition *width* is 1.3 mK.

✓ 1911 - Superconductivity of Hg T < 4.2K

Kamerlingh Onnes

Kamerlingh Onnes

✓ 1911 - Superconductivity of Hg T < 4.2K

Kamerlingh Onnes

applied B-field

 $T > T_c$ normal metal ✓ 1911 - Superconductivity of Hg T < 4.2K

Kamerlingh Onnes

applied B-field

 $T > T_c$ normal metal ✓ 1911 - Superconductivity of Hg T < 4.2K

applied B-field

 $T > T_c$ normal metal

 $T < T_c$ superconductor

Kamerlingh Onnes applied B-field

\checkmark 1911 - Superconductivity of Hg T < 4.2K

applied B-field

 $T > T_c$ normal metal

 $T < T_c$ superconductor

Kamerlingh Onnes applied B-field

\checkmark 1911 - Superconductivity of Hg T < 4.2K

applied B-field

 $T > T_c$ normal metal

 $T < T_c$ superconductor

 \checkmark 1911 - Superconductivity of Hg T < 4.2K ✓ 1913 - Persistent Currents in a Pb ring

Kamerlingh Onnes applied B-field

B-field from Persistent current

 $T < T_c$ superconductor

applied B-field

 $T > T_c$ normal metal

File & Mills, Phys Rev Lett 10, 93 (1963) - $\tau > 10^{5}$ yr ♦ Quinn & Ittner, J. Appl. Phys. 33, 748 (2004) - $\rho(T < T_c) < 3.6 \times 10^{-23} \Omega - cm$

 \checkmark 1911 - Superconductivity of Hg T < 4.2K ✓ 1913 - Persistent Currents in a Pb ring

Kamerlingh Onnes applied B-field

B-field from Persistent current

 $T < T_c$ superconductor

 $T < T_c$ superconductor

Energy Landscape of Current Carrying States of a Toroidal Ring $E[\Phi]$ -N = 3Thermally N2 Excited Flux Jumps Δ Φ/Φ_{c} 2 3 4 5

Metastable Persistent Current States protected by a large activation barrier

Equilibrium Current Carrying State of Supercurrents Perfect Diamagnetism 1933 - Walther Meissner & Robert Ochsenfeld, T.U. Munich

Screening Currents on the Boundary!

Electrodynamics of Superconductors

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

24

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935

London, F., London, H. <u>"The Electromagnetic Equations of the Supraconductor"</u>. Proc. Roy. Soc. A. **149**, 866 (1935)

Two Fluid Theory: n_n normal e^- and n_s super e^-

24

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935

London, F., London, H. <u>"The Electromagnetic Equations of the Supraconductor"</u>. Proc. Roy. Soc. A. **149**, 866 (1935)

Two Fluid Theory: n_n normal e^- and n_s super e^-

Low Temperatures: $T \ll T_c$ $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

Electrodynamics of Superconductors

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935

Two Fluid Theory: n_n normal e^- and n_s super e^-

$\frac{c}{4\pi} \nabla \times \mathbf{B} = \mathbf{J}$

London, F., London, H. <u>"The Electromagnetic Equations of the Supraconductor"</u>. Proc. Roy. Soc. A. **149**, 866 (1935)

Low Temperatures: $T \ll T_c$ $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935

Two Fluid Theory: n_n normal e^- and n_s super e^-

 $\frac{c}{\Delta \pi} \nabla \times \mathbf{B} = \sigma_n \mathbf{E}$

London, F., London, H. <u>"The Electromagnetic Equations of the Supraconductor"</u>. Proc. Roy. Soc. A. **149**, 866 (1935)

Low Temperatures: $T \ll T_c$ $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935 Two Fluid Theory: n_n normal e^- and n_s super e^- Low Temperatures: $T \ll T_c$ $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

Macroscopic Quantum State of $n_{s} \sim O(n)$ electrons

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935 Two Fluid Theory: n_n normal e^- and n_s super e^- Low Temperatures: $T \ll T_c$

Screening of Magnetic Fields

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

 $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

Macroscopic Quantum State of $n_{s} \sim O(n)$ electrons

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935 Two Fluid Theory: n_n normal e^- and n_s super e^-) A Low Temperatures: $T \ll T_c$ $n_s \rightarrow n \quad n_n \sim e^{-\Delta/T} \rightarrow 0$

$$\frac{c}{4\pi} \nabla \times \mathbf{B} = \sigma_n \mathbf{E} - n_s \left(\frac{e^2}{c}\right)$$

Screening of Magnetic Fields $\left(-\nabla^2 \mathbf{B} + \frac{1}{\lambda^2}\right)\mathbf{B} = 0$

Macroscopic Quantum State of $n_{s} \sim O(n)$ electrons

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

Electrodynamics of Superconductors Fritz London's Theory c.a. 1935 Two Fluid Theory: n_n normal e^- and n_s super e^- Low Temperatures: $T \ll T_c$

Screening of Magnetic Fields $\left(-\nabla^2 \mathbf{B} + \frac{1}{\lambda^2}\right)\mathbf{B} = 0$ $\lambda_{\rm L} = \sqrt{\frac{c^2}{4\pi^2}} \approx 50 - 100\,\rm{nm}$ $4\pi n_s e^2$

London, F., London, H. "The Electromagnetic Equations of the Supraconductor". Proc. Roy. Soc. A. 149, 866 (1935)

 $n_s \to n \quad n_n \sim e^{-\Delta/T} \to 0$

Macroscopic Quantum State of $n_s \sim O(n)$ electrons

Screening of Magnetic Fields $\lambda_{\rm L} = \sqrt{\frac{c^2}{4\pi n_s e^2}} \approx 50 - 100 \,\mathrm{nm}$

SRF Cavities with High Q work because of a 100-nm layer of superconductor!!

This region on screening currents confines the EM field to the cavity and a small layer of superconductor

RF field penetrates only ~100nm (London penetration depth of Nb)

Broken Symmetry & Ordered Phases

Broken Symmetry & Ordered Phases

Solid

Translations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

Solid

Translations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

Translations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

Nematic

Translations Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \, \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$

Anisotropic dielectric function

Nematic

Translations Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \, \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$

Anisotropic dielectric function

Nematic

Translations Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \, \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$

Anisotropic dielectric function Ferromagnet

Nematic

Translations Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \,\hat{\mathbf{n}}$

Anisotropic dielectric function

Ferromagnet

$$\mathbf{\hat{n}}_i \hat{\mathbf{n}}_j$$

 $\mathbf{M} = \gamma \left< \mathbf{S} \right>$

Spontaneous Magnetization

Nematic

Translations Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \,\hat{\mathbf{n}}$

Anisotropic dielectric function Ferromagnet

Spin Rotation

$$\hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$$

$$\mathbf{M} = \gamma \left< \mathbf{S} \right>$$

Spontaneous Magnetization

Nematic

Translations Spin Rotation Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \, \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$

Anisotropic dielectric function

Ferromagnet

Superfluids Superconductors

 $\mathbf{M} = \gamma \langle \mathbf{S} \rangle$

Spontaneous Magnetization

Nematic

Translations Spin Rotation Space Rotations

$$\rho(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \,\delta n(\mathbf{r})$$

X-ray diffraction peaks

 $\Delta \varepsilon_{ij} = \varepsilon(T) \, \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j$

Anisotropic dielectric function

Ferromagnet

Superfluids Superconductors

Gauge

 $\mathbf{M} = \gamma \langle \mathbf{S} \rangle$

Spontaneous Magnetization $\Psi = \langle \psi(\mathbf{r}) \rangle$ $\simeq \sqrt{N/V}$

Condensate Wave function

Ginzburg-Landau Theory August 6, 2023

Superconductivity originates from a macroscopic quantum state, $\Psi(\mathbf{r})$ with,

$$\Psi(\mathbf{r}) = |\Psi(\mathbf{r})| e^{i\vartheta(\mathbf{r})} \rightsquigarrow \vec{J}(\mathbf{r}) \propto |\Psi(\mathbf{r})|^2 \nabla \vartheta(\mathbf{r}) =$$

 $\blacktriangleright \Psi(\mathbf{r})$ is a thermodynamic variable of state at finite T and p

```
V. L. Ginzburg and L. D. Landau, JETP ... (1950).
```

 $n_{\rm S} \equiv |\Psi({\bf r})|^2 = {\rm density of "super" electrons}$

Ginzburg-Landau Theory August 6, 2023

 \blacktriangleright Superconductivity originates from a macroscopic quantum state, $\Psi(\mathbf{r})$ with,

 $\Psi(\mathbf{r}) = |\Psi(\mathbf{r})| \frac{e^{i\vartheta(\mathbf{r})}}{e^{i\vartheta(\mathbf{r})}} \rightsquigarrow \vec{J}(\mathbf{r}) \propto |\Psi(\mathbf{r})|^2 \nabla \vartheta(\mathbf{r}) = \text{``supercurrents''}$ $\blacktriangleright \Psi(\mathbf{r})$ is a thermodynamic variable of state at finite T and p

- Equilibrium: Landau's theory of symmetry breaking phase transitions
 - Continuous Transition: $\Psi \rightarrow 0$ for $T \rightarrow T_c 0^+$
 - Discontinuous Change in Symmetry: $G' \subset G$

```
V. L. Ginzburg and L. D. Landau, JETP ... (1950).
```

 $n_{\rm S} \equiv |\Psi({\bf r})|^2 = {\rm density of "super" electrons}$

Ginzburg-Landau Theory August 6, 2023

 \blacktriangleright Superconductivity originates from a macroscopic quantum state, $\Psi(\mathbf{r})$ with,

 $\Psi(\mathbf{r}) = |\Psi(\mathbf{r})| \frac{e^{i\vartheta(\mathbf{r})}}{e^{i\vartheta(\mathbf{r})}} \rightsquigarrow \vec{J}(\mathbf{r}) \propto |\Psi(\mathbf{r})|^2 \nabla \vartheta(\mathbf{r}) = \text{``supercurrents''}$ $\blacktriangleright \Psi(\mathbf{r})$ is a thermodynamic variable of state at finite T and p

- Equilibrium: Landau's theory of symmetry breaking phase transitions
 - Continuous Transition: $\Psi \rightarrow 0$ for $T \rightarrow T_c 0^+$
 - Discontinuous Change in Symmetry: $G' \subset G$
- ► Ginzburg-Landau: $U(1)_N$ gauge symmetry is brok

Taylor Expansion of the Free Energy in Maximal Symmetry Invariants: $\nabla_i \Psi \nabla_i \Psi^* = |\nabla \Psi|^2$

 $n_{\rm S} \equiv |\Psi({\bf r})|^2 = {\rm density of "super" electrons}$

ken:
$$\Psi \xrightarrow{\alpha \in U(1)_N} \Psi e^{i\alpha} \neq \Psi$$

$$\Psi\Psi^* = |\Psi|^2$$
 ,

$$\Psi\Psi\Psi^{*}\Psi^{*} = |\Psi|$$

Ginzburg-Landau Free Energy Functional August 6, 2023 for a homogeneous Superconductor ($\vec{B} = 0$): F = E - TS

Normal State

$$\boldsymbol{F}[\Psi;T,p] = \boldsymbol{F}_{N}(p,T) + \int dV \left\{ \boldsymbol{\alpha}(p,T) |\Psi|^{2} + \boldsymbol{\beta}(p,T) |\Psi|^{4} \right\}$$

Equibrium: Minimum of F with respect to Ψ ► Global Stability: $\beta > 0$ ► Transition: $\alpha(T_c, p) \equiv 0$

 $\blacktriangleright T > T_c: \Psi = 0 \text{ (normal state)}$

$$\rightsquigarrow \alpha(T,p) \approx \alpha'(T-T_c)$$

$$T < T_c: |\Psi| = \sqrt{\frac{|\alpha(T,p)|}{2\beta}} \sim (1 - T/T_c)^{\frac{1}{2}}$$

(1)

Ginzburg-Landau Thermodynamics August 6, 2023

Condensate Amplitude fo

3
or
$$T < T_c$$
: $\Psi_{eq} = \sqrt{\frac{\alpha' T_c}{2\beta}} (1 - T/T_c)^{\frac{1}{2}}$

Condensation Energy Density:

$$\Delta F_{eq} = \frac{1}{2} \alpha(T, p) \Psi_{eq}^2 \qquad (2)$$
$$= -\frac{(\alpha')^2}{4\beta} (T - T_c)^2 \qquad (3)$$

Entropy Reduction:

$$\Delta S = -\frac{\partial \Delta F}{\partial T} = \frac{(\alpha')^2}{2\beta} (T - T_c)$$
(4)

Heat Capacity Jump:

$$\Delta C = T \frac{\partial \Delta S}{\partial T} = T \frac{(\alpha')^2}{2\beta}$$

(5)

Ginzburg-Landau Theory - Coupling to Static Magnetic Fields August 6, 2023 External Field - \vec{H} , Magnetization \vec{M} and Total Field $\vec{B} = \nabla \times \vec{A}$ (Vector Potential) $\blacktriangleright \Psi(\mathbf{r})$ is the wave function for "super" electrons of charge e^* **BCS** theory: $e^* = 2e$ (Cooper Pairs of Electrons) Local Gauge Invariant Coupling: $\frac{\hbar}{i}\nabla\Psi \rightsquigarrow \left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A}\right)\Psi$ GL Functional with Coupling to \vec{A} plus Field Energy

$$\boldsymbol{F}[\Psi,\vec{A}] = \int dV \left\{ \alpha(T) |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{1}{2M^*} \left| \left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A}\right)\Psi \right|^2 + \frac{1}{8\pi} \left(\nabla \times \vec{A} - \vec{H}\right)^2 \right\}$$

Ginzburg-Landau Theory - Coupling to Static Magnetic Fields August 6, 2023 External Field - \vec{H} , Magnetization \vec{M} and Total Field $\vec{B} = \nabla \times \vec{A}$ (Vector Potential) $\blacktriangleright \Psi(\mathbf{r})$ is the wave function for "super" electrons of charge e^* **BCS** theory: $e^* = 2e$ (Cooper Pairs of Electrons) Local Gauge Invariant Coupling: $\frac{\hbar}{i} \nabla \Psi \rightsquigarrow \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} \vec{A}\right) \Psi$ GL Functional with Coupling to \vec{A} plus Field Energy

$$\boldsymbol{F}[\Psi,\vec{A}] = \int dV \left\{ \alpha(T) |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{1}{2M^*} \left| \left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A}\right)\Psi \right|^2 + \frac{1}{8\pi} \left(\nabla \times \vec{A} - \vec{H}\right)^2 \right\}$$

Euler-Lagrange Equations of GL Theory

$$\frac{1}{2M^*} \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} \vec{A}\right)^2 \Psi + \beta |\Psi|^2 \Psi = -\alpha(T) \Psi$$

$$\nabla \times \nabla \times \vec{A} = \frac{4\pi}{c} \vec{J} = \frac{4\pi}{c} \frac{e^*}{2M^*} \left[\Psi^* \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} \vec{A} \right) \Psi + c.c. \right] = \frac{4\pi}{c} \frac{e^*}{M^*} |\Psi(\mathbf{r})|^2 \left(\hbar \nabla \vartheta - \frac{e^*}{c} \vec{A} \right) \Psi + c.c.$$

• Gauge change: $\vec{A} \rightarrow \vec{A} + \nabla \Lambda \rightsquigarrow$

Ginzburg-Landau Field Equations

Local Gauge Invariance

$$\vartheta \rightarrow \vartheta + \frac{e^*}{\hbar c} \Lambda$$
 (broken $U(1)_N$ symmetry)

Quantization of Magnetic Flux (F. London, *Superfluids*, 1950) August 6, 2023

T < T_c in an External Magnetic Field
T < T_c Turn off External Field
Trapped *B* threads the hole in the Torus

 $\blacktriangleright \vec{B} = 0$ inside the Superconductor

 $ightarrow T < T_c$ in an External Magnetic Field $ightarrow T < T_c$ Turn off External Field \blacktriangleright Trapped \vec{B} threads the hole in the Torus

 $\blacktriangleright \vec{B} = 0$ inside the Superconductor

Quantization of Magnetic Flux (F. London, *Superfluids*, 1950) August 6, 2023 $\mathbf{V} \vec{J} = \frac{e^*}{M^*} |\Psi_0|^2 \left(\hbar \nabla \vartheta - \frac{e^*}{c} \vec{A}\right)$

▶ $\vec{J} \neq 0$ on the Inner surface

Meissner Screening inside the SC

$$\vec{J} = 0 \qquad \therefore \quad \oint_{\mathscr{C}} \vec{J} \cdot d\vec{l} \equiv 0$$

 $\sim \rightarrow$

 $ightarrow T < T_c$ in an External Magnetic Field $ightarrow T < T_c$ Turn off External Field \blacktriangleright Trapped \vec{B} threads the hole in the Torus

Phase Quantization:

► Flux

Quantization of Magnetic Flux (F. London, *Superfluids*, 1950) August 6, 2023 $\mathbf{V} \vec{J} = \frac{e^*}{M^*} |\Psi_0|^2 \left(\hbar \nabla \vartheta - \frac{e^*}{c} \vec{A}\right)$

 \blacktriangleright $\vec{J} \neq 0$ on the Inner surface

Meissner Screening inside the SC

$$\vec{J} = 0 \qquad \therefore \quad \oint_{\mathscr{C}} \vec{J} \cdot d\vec{l} \equiv 0$$

$$\vec{A} \cdot d\vec{l} = \frac{\hbar c}{e^*} \oint_{\mathscr{C}} \nabla \vartheta \cdot d\vec{l}$$

$$\oint_{\mathscr{C}} \nabla \vartheta \cdot d\vec{l} = N 2\pi$$
$$N = 0, \pm 1, \pm 2$$

Quantization:
$$\Phi \equiv \iint_{S_{\mathscr{C}}} \vec{B} \cdot d\vec{S} = \oint_{\mathscr{C}} \vec{A} \cdot d\vec{l} = N \frac{hc}{e^*}$$

Superconducting electrons are bound electron pairs: $\rightsquigarrow e^* = 2e$ $\therefore \Phi = N \frac{hc}{2e}$ with Flux Quantum $\Phi_0 \equiv \frac{hc}{2e} \approx 2 \times 10^{-7} \,\text{G-cm}^2$

Observation of Magnetic Flux Quantization August 6, 2023 R. Doll and M. Näbauer, Physical Review Letters 7, 51 (1961)

Observation of Magnetic Flux Quantization August 6, 2023 R. Doll and M. Näbauer, Physical Review Letters 7, 51 (1961)

Doll and N\"abauer thought they had a systematic error (" $\approx \times 2$ ") as they were looking to find steps of size $\frac{hc}{e}$ - London's prediction prior to BCS theory!

Superconductor-Normal-Superconductor Quantum Interference Device • Au – normal conductor (in *contact* to superconducting leads) V. Chandrasekhar's Lab Northwestern University

- Al superconductor
- Silicon oxide substrate

 $\Delta\vartheta = 2\pi\Phi/\Phi_0$

Josephson Effect

- $I > I_c$
 - B. Josephson, Phys. Lett. 1, 251 (1962); Adv. Phys. 14, 419 (1965)

- $I > I_{c}$
 - B. Josephson, Phys. Lett. 1, 251 (1962); Adv. Phys. 14, 419 (1965)

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 $k_{\mathcal{X}}$

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 \underline{k}_y

Normal Metal Filled Fermi Sea

 $k_{\mathcal{X}}$

 $-\vec{k}\downarrow$

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 k_y

 k_x

 $-\vec{k}\downarrow \otimes$

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 k_y

 k_x

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability $\int_{k_z}^{k_z}$

 ω_D

 \bigotimes

 k_y

 k_x

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 ω_D

 \otimes

 k_y

 $k_{\mathcal{X}}$

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 ω_D

 \otimes

 k_y

 $k_{\mathcal{X}}$

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 ω_D

 \otimes

 k_y

$-\vec{k}\downarrow$

 k_{x}

L. N. Cooper, Phys. Rev. 104, 1189 (1956)

Cooper's Instability

 $\otimes \vec{k} \uparrow$

Bound-State of 2 electrons on the Fermi Sea $\epsilon_{bs} = -\omega_D \, e^{-1/N(0)V}$

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER‡ Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

N/2|Fermi >

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER‡ Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

Electron Pairs - charge = 2e N/2|Fermi >

Macroscopic State of Fermion Pairs

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER‡ Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

BCS Condensation: Condensation Energy * Supercurrents Energy Gap for Excitations

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

Electron Pairs - charge = 2e N/2 $|BCS\rangle = \sum_{k} \Phi_{k} a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger}$ |Fermi >

Macroscopic State of Fermion Pairs

Josephson Effect Meissner Effect

Flux Quantization

Reduced to London & Ginzburg-Landau Theories in appropriate limits

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER, † AND J. R. SCHRIEFFER‡ Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

BCS Condensation:

Condensation Energy

* Supercurrents

Energy Gap for Excitations

"It would have been very difficult to have arrived at the theory [of superconductivity] by purely deductive reasoning from the basic equations of quantum mechanics. Even if someone had done so, no one would have believed that such remarkable properties would really occur in nature."

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

Electron Pairs - charge = 2e N/2 $|BCS\rangle = \sum_{k} \Phi_{k} a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger}$ |Fermi >

Macroscopic State of Fermion Pairs

Josephson Effect *Meissner Effect

Reduced to London & Ginzburg-Landau Theories in appropriate limits

Flux Quantization

John Bardeen Nobel Lecture, Stockholm, December 11, 1972

Type I Superconductors

Type I Superconductors

B

N

Type II Superconductors

Mixed State

Abrikosov Vortices

A.A. Abrikosov "On the magnetic properties of ... ", Soviet Physics JETP 5, 1174 (1957)

Abrikosov Vortices

H

$H_{c_1} < H < H_{c_2}$

H

$H_{c_1} < H < H_{c_2}$

Scanning Tunneling Microscope

Tunnel Current

G. Binnig & H. Rohrer (1986) IBM J. Res. Develop. 30, 355

Scanning Tunneling Microscope

Tunnel Current

G. Binnig & H. Rohrer (1986) IBM J. Res. Develop. 30, 355

Abrikosov Vortex Lattices

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. Magnetic Decoration Phys. Rev. (2003)

NbSe₂ Tc=5K, Hess et al. PRL (1989)

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. Phys. Rev. (2003)

Magnetic Decoration Phys. Rev. (2003)

Scanning Tunneling Abrikosov Microscope Spectroscopy

NbSe₂ Tc=5K, Hess et al. PRL (1989)

4 GOOD Å

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. Phys. Rev. (2003)

Magnetic Decoration Phys. Rev. (2003)

Scanning Tunneling Microscope Spectroscopy

NbSe₂ Tc=5K, Hess et al. PRL (1989)

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. Magnetic Decoration Phys. Rev. (2003)

Scanning Tunneling Microscope Spectroscopy

NbSe₂ Tc=5K, Hess et al. PRL (1989)

Small Angle Neutron Diffraction By the Magnetic field of Flux Lines

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. **Phys. Rev. (2003)**

Magnetic Decoration

Scanning Tunneling Microscope Spectroscopy

NbSe₂ Tc=5K, Hess et al. PRL (1989)

Small Angle Neutron Diffraction By the Magnetic field of Flux Lines

> Other Imaging Methods

MgB₂ T=2K, B=2 kG M. R. Eskildsen et al. PRL (2002)

Abrikosov Vortex Lattices

MgB₂ crystal, 200G L. Ya. Vinnikov et al. Phys. Rev. (2003)

Magnetic Decoration

Abrikosov Vortices are Often Pinned to Impurities or Disordered and complex Flux pattern

Levitation by High-Tc superconductors A. B. Riise, et al. Physical Review B 60, 9855 (1998)

Abrikosov Vortices are Often Pinned to Impurities or Structural Defects in the Superconductor ->> Disordered and complex Flux pattern

Levitation by High-Tc superconductors A. B. Riise, et al. Physical Review B 60, 9855 (1998)

Abrikosov Vortices are Often Pinned to Impurities or Structural Defects in the Superconductor ->> Disordered and complex Flux pattern

NdFeB - Magnet

YBCO - Superconductor

Flux Pinning

Flux Creep on warming

The Energy Gap of BCS Superconductors

Normal metal $\xi_{\mathbf{p}} = \frac{|\mathbf{p}|^2}{2m} - \frac{p_f^2}{2m} \approx v_f(|\mathbf{p}| - p_f)$ Superconductor $E_{\mathbf{p}} = \sqrt{\xi_{\mathbf{p}}^2 + \Delta^2}$

Two types of Excitations

The Energy Gap of BCS Superconductors

$\xi_{\mathbf{p}} = \frac{|\mathbf{p}|^2}{2m} - \frac{p_f^2}{2m} \approx v_f(|\mathbf{p}| - p_f)$ Normal metal $E_{\mathbf{p}} = \sqrt{\xi_{\mathbf{p}}^2 + \Delta^2}$ Superconductor

Number of States per unit Energy in $(\varepsilon, \varepsilon + d\varepsilon)$

Heat Capacity of AI, Phys. Rev. 114, 676 (1959), N.E. Phillips

Heat Capacity of AI, Phys. Rev. 114, 676 (1959), N.E. Phillips

Heat Capacity of AI, Phys. Rev. 114, 676 (1959), N.E. Phillips

Evidence of an Energy Gap for un-bound electrons in Superconductors

Rev. Mod. Phys. 30, 1109 (1958), M. Biondi et al.

Phys. Rev. 122, 1101 (1961), I. Gaiver et al.

FIG. 6. Reduced electronic specific heat in the superconducting state for vanadium and tin.

Heat Capacity of AI, Phys. Rev. 114, 676 (1959), N.E. Phillips

Evidence of an Energy Gap for un-bound electrons in Superconductors

Rev. Mod. Phys. 30, 1109 (1958), M. Biondi et al.

Phys. Rev. 122, 1101 (1961), I. Gaiver et al.

FIG. 11. The energy gap of Pb, Sn, and In films as a function of reduced temperature, compared with the Bardeen-Cooper-Schrieffer theory.

Energy Gap: $\Delta \approx 1.5 - 1.8 k_{\text{B}} T_c$

Heat Capacity Jumps & Energy Gaps for Elemental SCs

Element	$2\Delta/k_BT$	$\Delta C/\gamma T_c$	Element	$2\Delta/k_BT$	$\Delta C/\gamma T_c$
AI	2.5-4.2	1.3–1.6	Pb	4.0-4.4	2.7
Cd	3.2–3.4	1.3–1.4	Sn	2.8–4.0	1.6
Ga	3.5	1.4	Ta	3.5–3.7	1.6
Hg	4.0-4.6	2.4	TI	3.6–3.9	1.5
In	3.4–3.7	1.7	V	3.4–3.5	1.5
La	1.7–3.2	1.5	Zn	3.2–3.4	1.2–1.3
Nb	3.6–3.8	1.9–2.0			
BCS	3.53	1.43			

Table: Source: M. Marder, Condensed Matter Physics, Chapter 27, Wiley, 2010
Importance of understanding and controlling the excitation spectrum for superconducting quantum processors and sensor development

Quasiparticle Excitations – BCS Spectrum (Density of States)

Quasiparticle Excitations – BCS Spectrum (Density of States)

w a 1 J(T=0) Q-hole excitations E Thermal Excitations BCS Quasiparticle Density of States 12 E/keT Nn = 3 n/EF = Normal Metal Dos @ EF. → BCS Excitation Gap: 1/kBT A = Excitation Gap for Quasipantiles/Q-holes ypical A(Nb) = 2 mel > Expected Negligible ~ 0.7 mel SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER 50

•					•
					•
_					•
1	2				
~		•			•
-					•
•					•
a	6:	'n	S		•
					•
				,	
_					
)			
	2).			
C	U.				
\sim	′ς	/	_		•
/	< <u> </u>	/	-		
	~				
G QUANTUM					

Non-Equilibrium Quasiparticle Excitations in QIS devices

Hot Nonequilibrium Quasiparticles in Transmon Qubits

K. Serniak,^{1,*} M. Hays,¹ G. de Lange,^{1,2} S. Diamond,¹ S. Shankar,¹ L. D. Burkhart,¹ L. Frunzio,¹ M. Houzet,³ and M. H. Devoret^{1,†} ¹Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA ²QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands ³Univ. Grenoble Alpes, CEA, INAC-Pheliqs, F-38000 Grenoble, France

(Received 2 April 2018; revised manuscript received 27 July 2018; published 10 October 2018)

Nonequilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we systematically correlate qubit relaxation and excitation with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples. By itself, the observed quasiparticle distribution would limit T_1 to $\approx 200 \ \mu s$, which indicates that quasiparticle loss in our devices is on equal footing with all other loss mechanisms. Furthermore, the measured rate of quasiparticle-induced excitation events is greater than that of relaxation events, which signifies that the quasiparticles are more energetic than would be predicted from a thermal distribution describing their apparent density.

51

PHYSICAL REVIEW LETTERS 121, 157701 (2018)

 $\approx 10^{-7} \gg x_{OP}^{thermal}$

Quasiparticle Excitations – BCS theory vs Observation

Quasiparticle Excitations – BCS theory vs Observation Thermal population of Quasiparticles $x_{OP}^{thermal} = \int_0^\infty d\varepsilon f(\varepsilon) N(\varepsilon)/N_n$ 100 140 160 120 180 10⁻⁵ Empirical ``nonthermal" QP population 10⁻⁶ 10⁻⁷ 0.07 $x_{\mathrm{QP}}^{\mathrm{th.}}$ 10-8 @ T = 10 mK 0.04 10⁻⁹ $k_B T / \Delta_{Al} \approx 0.025$ 10⁻¹⁰ 0.0 10^{-1} 0.06 0.08 $k_B T / \Delta$ $\chi_n >$ Kyle Serniak, PhD thesis (Yale), 2019 Η_γ -H-52 $H \oplus R_{\mathbb{Z}}(\Theta \mathcal{X}_n)$ -H-γ-

Sub-gap QP states

Sub-gap QP states

Cooper Pair breaking Mechanisms

- Impurity scattering & $\Delta(\mathbf{p})$
- Inhomogeneous $\Delta(\mathbf{r})$ \Downarrow
- Andreev Bound States

Sub-gap QP states

Cooper Pair breaking Mechanisms

- Impurity scattering & $\Delta(\mathbf{p})$
- Inhomogeneous $\Delta(\mathbf{r})$ \Downarrow
- Andreev Bound States
- Magnetic impurities

Sub-gap QP states

Cooper Pair breaking Mechanisms

- Impurity scattering & $\Delta(\mathbf{p})$
- Inhomogeneous $\Delta(\mathbf{r})$ \Downarrow
- Andreev Bound States
- Magnetic impurities
- Dynamical Impurities (TLS[†])

Cooper Pair breaking Mechanisms

- Impurity scattering & $\Delta(\mathbf{p})$
- Inhomogeneous $\Delta(\mathbf{r})$ \Downarrow
- Andreev Bound States
- Magnetic impurities
- Dynamical Impurities (TLS[†])
 O, N, C, OH, NH ...

[†]impurity that tunnels between nearby sites

Cooper Pair breaking Mechanisms

- Impurity scattering & $\Delta(\mathbf{p})$
- Inhomogeneous $\Delta(\mathbf{r})$ \downarrow
- Andreev Bound States
- Magnetic impurities
- Dynamical Impurities (TLS^{\dagger}) O, N, C, OH, NH ...

• Multi-photon (nonlinear μ -wave excitation) Radioactivity (INFN) Nonequilibrium QP generation

[†]impurity that tunnels between nearby sites

Range of Impact of the BCS Theory of Superconductivity

ty Key Discoveries

1908 Helium is liquified

- 1911 Superconductivity is discovered in Hg
- 1933 Diamagnetism Meissner Effect
- 1935 London's Theory
- 1950 Ginzburg-Landau Theory
- 1956 Copper Instability
- 1957 BCS Pairing Theory
- 1957 Landau Fermi Liquid Theory
- 1957 Abrikosov's Theory of Type II SC
- 1958 Pairing in Nuclei and Nuclear Matter
- 1959 Gauge-Invariant Pairing Theory
- 1959 Field Theory formulation of BCS Theory
- **1961** Theory of Spin-Triplet Pairing
- 1962 Josephson Effect
- 1967 Pulsars discovered Hewish & Bell
- 1969 Pulsar Glitches observed in Vela
- 1980 Superfluid hydrodynamics of NS
- **1972** Discovery of Triplet, P-wave Superfluid ³He
- 1979 Discovery of Heavy Electron Superconductors
- 1982 Exotic Pairing in U-based Heavy Fermions
- 1986 High T_c CuO Superconductivity
- **1994** Exotic Pairing discovered in Sr_2RuO_4
- 1995 D-wave Pairing identified in YBa₂Cu₃O_{7-x}
- 2001 Co-existent Ferromagnetism & Superconductivty
- 2008 Fe-based Superconductors discovered
- 1995 Discovery of BEC in cold atomic ⁸⁷Rb
- 1998 Degeneracy of Cold Fermionic Gases: ⁶Li
- 2007 BEC-BCS Condensation in 6 Li, 40 K
- 2008 *Topological* Superfluids & Superconductors