Introduction to Quantum Computing: Qubits, Gates, and Algorithms

William D. Oliver EECS and Physics Departments Massachusetts Institute of Technology william.oliver@mit.edu

August 07, 2023

Quantum Information Science and Technology

Quantum Information Science utilizes a quantum mechanical description of nature to compute, sense, and communicate information in ways unobtainable by means based on a classical description of nature

Computing Development Timeline

Classical Computing (Electronic)

Quantum computing is transitioning from scientific curiosity to technical reality.

Advancing from discovery to useful machines takes time & engineering

You must be in the game to play

18 cores

32 cores

Quantum Worldwide (not exhaustive)

* European Commission

Nascent Commercial Quantum Processors

IBM

To realize the promise of QC, we must engineer quantum systems that are robust, reproducible, and extensible.

Outline

□ Introduction

- □ Classical and Quantum Bits
- Quantum Gates and Algorithms
- Engineering Quantum Systems

Classical Computer

Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory, …)		
State	0 "Or" 1		
Measurement	 <i>Discrete</i> states Deterministic measurement: Ex: Set as 1, measure as 1 		

	Classical Computer	Quantum Computer	
Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory,)	"Qubit" : quantum bit (any coherent two-level system)	
State	0 "Or" 1	$ 0\rangle \qquad Superposition: \\ \alpha 0\rangle + \beta 1\rangle \\ 0\rangle \qquad ``And'' 1\rangle \\ \psi\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	
Measurement	 <i>Discrete</i> states Deterministic measurement: Ex: Set as 1, measure as 1 	 Superposition states Probabilistic measurement: Ex: If α = β , 50% 0>, 50% 1> 	

Quantum computers rely on encoding information in a fundamentally different way than classical computers

Classical Computer

Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory, …)
Computing	 N bits: One N-bit state 000, 001,, 111 (N = 3) Change a bit: new calculation (classical parallelism) 000 → () → (000) 001 → () → (001)
	U 🔿

	Classical Computer	Quantum Computer
Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory, …)	"Qubit" : quantum bit (any coherent two-level system)
Computing	 N bits: One N-bit state 000, 001,, 111 (N = 3) Change a bit: new calculation (classical parallelism) 	 N qubits: 2^N components to one state α 000⟩ + β 001⟩ + ··· + γ 111⟩ (N = 3) Quantum parallelism & interference
	$000 \longrightarrow \boxed{2} \longrightarrow f(000)$ $001 \longrightarrow \boxed{2} \longrightarrow f(001)$	$ \begin{array}{c c} \alpha & 0 & 0 \\ \hline \end{array} & \bullet \\ \beta & 0 & 0 \\ \hline \end{array} & \bullet \\ \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \bullet \\ \beta' & f(0 & 0 & 1 \\ \hline \end{array} & \bullet \\ \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \bullet \\ \beta' & f(0 & 0 & 1 \\ \hline \end{array} & \bullet \\ \end{array} $

Quantum computers rely on encoding information in a fundamentally different way than classical computers

Classical and Quantum Bits

 $2^{N} \rightarrow 2^{3} = 8 \rightarrow \{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\}$

Coefficients are shuttled between states

3-spin system

##

 C_7

 C_8

x

Operates on entire system simultaneously

> Quantum Parallelism

3-spin system

Classical Gates

GATE	CIRCUIT REPRESENTATION	TRUTH TABLE				<i>n</i>	
NOT The output is 1 when the input is 0 and 0 when the input is 1.	->>-	InputOutput0110		GATE	CIRCUIT REPRESENTATION	TRUTH TABLE	
AND The output is 1 only when both inputs are 1, otherwise the output is 0.	=D-	Input Output 0 0 0 1 0 0 1 0 1 1	NOT	The output is 1 when the input is 0 and 0 when the input is 1.	->	Input Output 0 1 1 0	<u>t</u>
OR The output is 0 only when both inputs are 0, otherwise the output is 1.	=D-	Input Output 0 0 0 1 1 0 1 1				Input Output	t
NAND The output is 0 only when both inputs are 1, otherwise the output is 0.	⊐D⊷	Input Output 0 0 1 0 1 1 1 0 1 1 1 0	AND	The output is 1 only when both inputs are 1, othe	-D-	$\begin{array}{c c} \hline mpar} \\ \hline 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline 0 \\ \end{array} \\$	-
NOR The output is 1 only when both inputs are 0, otherwise the output is 0.	⊐⊅∽	Input Output 0 0 1 0 1 0 1 0 0 1 1 0		output is C • Univ	versal gate se	ts for Boolean I	ogic
XOR The output is 1 only when the two inputs have different value, otherwise the output is 0.	⊐D-	Input Output 0 0 0 1 1 0 1 1 0 0	OR	The outpur when both – E. are 0, othe	g., NOT, AND g., NOR		
XNOR The output is 1 only when the two inputs have the same value, otherwise the output is 0.		Input Output 0 0 1 0 1 0 1 0 0 1 1 1		output is 1. – Ai – Re	nd many more (not equires at least on	: unique) e two-bit gate	

Single-Qubit Quantum Gates

GATE	CIRCUIT REPRESENTATION	MATRIX REPRESENTATION	TRUTH TABLE	BLOCH SPHERE
I Identity-gate: no rotation is performed.	— <u>I</u> —	$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\frac{\text{Input}}{ 0\rangle} \frac{\text{Output}}{ 0\rangle} \\ 1\rangle 1\rangle$	z x y
X gate: rotates the qubit state by π radians (180°) about the x-axis.	— <u>X</u> —	$X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\frac{\text{Input}}{ 0\rangle} \frac{\text{Output}}{ 1\rangle} \\ 1\rangle 0\rangle$	z 180° y
Y gate: rotates the qubit state by π radians (180°) about the y-axis.	— <u>Y</u> —	$Y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$	$\frac{\text{Input}}{ 0\rangle} \frac{\text{Output}}{i 1\rangle} \\ 1\rangle -i 0\rangle$	

Two-Qubit Quantum Gates

GATE	CIRCUIT REPRESENTATION	MATRIX REPRESENTATION	TRUTH TABLE
Controlled-NOT gate: apply an X-gate to the target qubit if the control qubit is in state 1)		$CNOT = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$	$\begin{array}{c c} Input \\ \hline 100\rangle & 000\rangle \\ \hline 101\rangle & 101\rangle \\ \hline 110\rangle & 111\rangle \\ \hline 111\rangle & 110\rangle \end{array}$
Controlled-phase gate: apply a Z-gate to the target qubit if the control qubit is in state 1)		$cZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$	$\begin{array}{c c} \mbox{Input} & \mbox{Output} \\ \hline \mbox{I00} & \mbox{I00} \\ \hline \mbox{I01} & \mbox{I01} \\ \hline \mbox{I10} & \mbox{I10} \\ \hline \mbox{I11} & \mbox{-}\mbox{I11} \\ \end{array}$

- Universal gate sets for quantum logic
 - E.g., H, S, T, CNOT
 - And many more (not unique)
 - Requires at least one two-qubit entangling gate

Single-Qubit Gate Example

Single-Qubit Gate Example

Microwave Pulse Control

Gate Sequence

Application

Control applied via capacitive or inductive coupling of a microwave pulse to the qubit

Microwave Pulse Control

X and Y Rotations on the Bloch Sphere

I-Q Mixing

I: in-phase $(0^{\circ}) \rightarrow x$ Qxis Q: quadrature $(90^{\circ}) \rightarrow y$ axis

Two-Qubit Gate Example

For example:

$$|\psi_{\text{out}}\rangle \propto |0\rangle_{x} |0\rangle_{y} + |1\rangle_{x} |1\rangle_{y} \neq (\cdots)_{x} (\cdots)_{y}$$

 $|\psi\rangle \propto (|0\rangle + |1\rangle) |0\rangle$

Results in an *entangled state* (cannot be factored)

Universal gate-model quantum computation is achievable with a small set of single and two-qubit gates.

Quantum Algorithm

Paths to Applications

M. Kjaergaard, WDO, et al., Annual Reviews of CMP 11, 369-395 (2020)

Commercial Quantum Advantage

Small region where useful quantum algorithms exist (as we know them today)

Types of Quantum Advantage

Exponential Growth

Exponential Growth: Doubling Pennies Every Day for 1 Month

 $2^0 = 1$ penny

 $2^{1} = 2$ pennies $2^{2} = 4$ pennies $2^{3} = 8$ pennies

After 31 days, would you take the pennies or \$10M?

Exponential Growth

Exponential Growth: Doubling Pennies Every Day for 1 Month

2¹ = 2 pennies 2² = 4 pennies 2³ = 8 pennies

2³¹ = 2,147,483,648 pennies > \$21M !!

Exponential Power

• Simulating quantum computers (QCs) on classical computers

Exponential Power

• Simulating quantum computers (QCs) on classical computers

Qubits	Size of simulator
30	laptop
50	supercomputer
Exponential Power

• Simulating quantum computers (QCs) on classical computers

Qubits	Size of simulator
30	laptop
50	supercomputer
80	all computers on Earth

Exponential Power

• Simulating quantum computers (QCs) on classical computers

Qubits	Size of simulator
30	laptop
50	supercomputer
80	all computers on Earth
160	all Si atoms in Earth

Exponential Power

• Simulating quantum computers (QCs) on classical computers

Qubits	Size of simulator
30	laptop
50	supercomputer
80	all computers on Earth
160	all Si atoms in Earth
300	> all atoms than in known universe

Digital Quantum Algorithms

Algorithm	Classical Time	Quantum Time	Speedup	Limitation	
Simulation ¹ (quantum chemistry)	2 ^N (for N atoms)	Nc	Exp. in space, polynomial in time	Mapping problem to qubits	
Factoring ² (+ related number theoretic)	2 ^N (for N digits)	N ³	Exponential	Classical runtime limit unproven	
Linear systems ³ (Ax=b)	2 ^N (for N digits)	~N	Exponential	Strict conditions, e.g. sparse matrix	
Optimization ⁴	2 ^N	?	?	Empirical	
Search ⁵ (unsorted / unstructured data)	Ν	\sqrt{N}	Polynomial (\sqrt{N})	Data loading	
Anand Natarjan	Ike ChuangSeth Lloyd	1,3 Peter Shor ² Ara	$am Harrow^{3}$	Michael Sipser ⁴	

Minimum requirements for the physical implementation of a quantum computer

- D1: Robust, reproducible qubit technology
- **D2: Initialization**
- **D3: Measurement**
- D4: Universal set of gates
- **D5: Coherence & fidelity**

Dedicated Superconducting Qubit Fab

- 200-mm wafers & 50-mm wafers
- Qubits and classical digital electronics
- Deposition, dry etch, PECVD, CMP
- Unique facility worldwide

Custom Plassys Evaporator

Electron Beam Lithography

MIT-LL Raith EBPG5200 routinely patterns <150 nm Josephson junctions

Veeco Gen-200 MBE

Minimum requirements for the physical implementation of a quantum computer

- D1: Robust, reproducible qubit technology
- **D2: Initialization**
- **D3: Measurement**
- D4: Universal set of gates
- **D5: Coherence & fidelity**

Fabrication Process Monitoring

- Data-driven process development
- >1000-10,000 test structures (50-200 mm wafers)
- JJs, lines, combs & snakes, contacts, crossovers, chains, ...
- Automated testing and analysis

Room-Temp Probe Station

Cross-Wafer Variation Maps 4.18 4.33 4.43 4.28 3.98 4.49 4.14 4.06 4.57 4.55 4.34 4.16 4.09 4.52 4.42 4.21 4.58 3.9 4.58 4.46 4.23 J = 4.2765 atd = 0.21131

S. Tolpygo, ..., WDO, IEEE Appl. Supercond. (2014, 2015); K.K. Berggren et al., ibid (1999)

WDO, et al., unpublished (2006)

Minimum requirements for the physical implementation of a quantum computer

D1: Robust, reproducible qubit technology

D2: Initialization

D3: Measurement

D4: Universal set of gates

D5: Coherence & fidelity

High-fidelity (99.9%) state initialization

• Microwave cooling (active)

55

60

65

50

- Cryogenic engineering (passive)
- Active measurement-based feedback

Microwave Cooling

WDO et al., Science 310, 1653 (2005); Science 310, 1589 (2006); Nature 455, 51 (2008)

Cryogenic Engineering

X. Jin, ..., WDO, PRL 114, 240501 (2015)

pexp: Maxwell-Boltzmann (Eq. 1)

Ples : Maxwell-Boltzmann

2-point averaging

٥.

15

20

residual population ~ 0.1%

25

30

35

Bath Temperature (mK)

40

45

Excited State Population

A. Greene, ..., WDO, APS MM (2018)

Minimum requirements for the physical implementation of a quantum computer

D1: Robust, reproducible qubit technology

- D2: Initialization
- D3: Measurement
- D4: Universal set of gates

D5: Coherence & fidelity

High-fidelity (99%) measurement

- Control electronics and software
- Syndrome measurement and feedback
- Error detection and correction

Gustavsson, Krantz, Hover, and WDO

Control electronics, software, and quantum-limited amplifiers high-fidelity measurement of error syndromes

Oubit

Contro

DLabber

Macklin, WDO, et al., Science (2015)

Minimum requirements for the physical implementation of a quantum computer

- D1: Robust, reproducible qubit technology
- D2: Initialization
- D3: Measurement
- D4: Universal set of gates
- D5: Coherence & fidelity

Coherence Time and Gate Time

Gate time t_{gate}: Time required for a single gate operation

Figure of Merit * : # of gates per coherence time = t_{coh}/t_{gate}

(* Rigorous metric: gate & readout fidelity)

Long coherence times are not sufficient, it's the number of gates before an error

Qubit Modalities

Qubit Modalities

MIT Campus

MIT Lincoln Lab

Rajeev Ram Ike Chuang Physics, EECS

John Chiaverini LL, RLE

Will Oliver EECS, Phys., LL

EECS

Terry Orlando Jamie Kerman

LL

and large teams at MIT & LL

EECS

Qubit Modalities

Artificial Atom: Superconducting Qubits

Qubit: superconducting circuit

Phase, flux, or charge

- □ Coherence times: ~ 100 us
- □ Fidelity and operation times

1 QB:	99.99% in 10 ns
2 QB:	99.9% in 40 ns
_	00.00/ : 000

- Readout: 99.0% in 200 ns
 Clock rate: ~ 25 MHz
- □ Largest algorithm: 53 qubits
- □ Companies:
 - AWS, Google, IBM, QCI, Rigetti, ...
 - Annealing: D-Wave

Electrical Circuit -- Anharmonic Oscillator

Atomic State: Trapped Ion Qubits

- Qubit: energy levels of an ionized atom
 - Ca+, Sr+, Be+
 - Optical or microwave transitions
- □ Coherence times: 10 s
- □ Fidelity and operation times
 - 1 QB: 99.999% in 5 us
 2 QB: 99.900% in 50 us
 Readout: 99.990% in 30 us
- □ Clock rate: ~ 20 kHz
- □ Largest algorithm: 30 qubits
- Companies: Honeywell, Ion-Q, AQT, Universal Quantum, ...

Atomic State: Neutral Atoms

- Qubit: energy levels of a neutral atom
 - Rb, Cs, Ho trapped in an optical lattice
 - Optical and microwave fields
- □ Coherence times: 1 s
- □ Fidelity and operation times
 - 1 QB: 99% in 3 us
 2 QB: >99% in 300 us
 Readout: 99.90% in >3 milliseconds
- □ Clock rate: 10 kHz
- □ Largest lattices: 100-300 qubits
- Companies: Atom Computing, ColdQuanta, Pasqual, QuEra

Electron Spin: SiGe Quantum Dots

Qubit: electron spin

- Quantum dots in SiGe 2DEGs
- RF and baseband pulsing
- Double-dot, triple-dot, CMOS dot
- Coherence times: 400 us

Fidelity and operation times

- 1 QB: 99.5% in 100 ns
- 2 QB: >99% in 200 ns
- Readout: 99% in 1 us
- □ Clock rate: 5 MHz
- Companies: HRL, Intel

SiGe Quantum Dots

Energy Levels

Nature 479, 345 (2011)

Electron Spin: Phosphorus-Doped Silicon

- Qubit: electron spin (nuclear spins)
 - Phosphorus donor in silicon
 - Microwave pulses
- Coherence times: 100 ms (1 s)

Fidelity and operation times

- 1 QB: 99.5% in 200 ns (99.99% in 100 us)
 - 2 QB: ~ 90% in 1-100 ns
- Readout: 95.0% in 1 ms (99.9% in 50 ms)
- Clock rate: TBD
- Companies: SQC (Silicon Quantum Computing)

Phosphorous-Doped Silicon

Electron and Nuclear Spins: NV Centers

Qubit: electron or nuclear spin

- Nitrogen vacancy electron (NV-)
- Nitrogen or carbon nuclear spins
- Other defects may be used

Coherence times: 20 ms

Fidelity and operation times

1 QB:	99.5% i	in 10 us
2 QB:	>90%	in 25 ι

>90% in 25 us

94.0% in 50 us Readout:

Clock rate: 40 kHz

Companies: N/A (mostly sensing applications)

Diamond with Nitrogen Vacancy

(note: redraw and have all carbon atoms be blue with a nuclear spin. Do not label C1...C4, just put an "n" inside one. Put an "e" inside the electron instead of e-. Label B rather than Bz

Energy Levels

Benchmarking Methods

Randomized Benchmarking

Pros

- Simple and efficient procedure to obtain fidelity
- Current 'gold standard'

Cons

• Time dependent errors may alter decay curve

Quantum Process Tomography

Pros

 Exact reconstruction of any quantum process

Cons

- Exponential resource requirement (3 qubits is the borderline)
- Cannot separate gate
 errors from SPAM errors

Gate Fidelities

Single-Qubit Gate Fidelity > 0.999

Two-Qubit Gate Fidelity > 0.995

Y. Sung et al. arXiv:2011.01261 (2020): Experiment

Quantum Advantage Demonstrations

TABLE I. The runtime of tensor network algorithm for different circuits on Summit. The classical simulation consumption estimation of the random quantum circuit sampling experiment on the Sycamore, *Zuchongzhi* 2.0, and *Zuchongzhi* 2.1 processors are provided. FPOs is the abbreviation for the number of floating point operations, QPU is the abbreviation for quantum processing unit.

Processor	Circuit	Fidelity	# of bitstrings	FPOs (a perfect sample)	FPOs (circuit)	Runtime on	Runtime on	ClassicalRuntime QauntumRuntime
Sycamore [8]	53-qubit 20-cycle	0.224%	$3.0 imes 10^6$	$\frac{(a \text{ perfect sample)}}{1.63 \times 10^{18}}$	1.10×10^{22}	15.9 days	600s	2.29×10^{3}
Zuchongzhi 2.0 [11]	56-qubit 20-cycle	0.0662%	$1.9 imes 10^7$	$1.65 imes10^{20}$	2.08×10^{24}	8.2 years	1.2h	$6.02 imes 10^4$
Zuchongzhi 2.1	60-qubit 22-cycle	0.0758%	$1.5 imes 10^7$	$1.06 imes 10^{22}$	1.21×10^{26}	4.8×10^2 years	1h	4.21×10^6
Zuchongzhi 2.1	60-qubit 24-cycle	0.0366%	$7.0 imes 10^7$	$4.68 imes 10^{23}$	1.2×10^{28}	4.8×10^4 years	4.2h	$9.93 imes 10^7$

The Google Quantum AI team demonstrated

a calculation in ~200s with one chip, 53 superconducting qubits, drawing around 100 kW of power

On the Summit supercomputer (Oak Ridge National Laboratory),

it would take several days, with all 40,000 CPUs & GPUs, 10¹⁷ transistors & memory, and 100's MW of power

Google AI, Nature 505, 574 (2019); USTC, arXiv:2109.03494 (2021)

Architectural Layers of a QIP

Architectural Layers of a QIP

Layered Architecture

N.C. Jones PRX 2, 031007 (2012)

Architectural Layers of a QIP

Engineered Error Mitigation: Dynamical Decoupling

Eg. Lacrosse Cradling

Lacrosse in the Presence of Noise

Dynamical Decoupling from Running "Noise"

"Active Error Correction" in Lacrosse

Coherence Times

Qubit Dephasing and Filter Function

Engineered filter function depends on pulse sequence and windows the PSD $S_{\lambda}(\omega)$

J. Bylander, ..., WDO, Nature Physics (2011), Martinis et al., PRB (2003), Ithier et al., PRB (2005); Yoshihara et al., PRL (2006), Cywinski et al. PRB (2008)

Dynamical Decoupling: Noise Shaping Filters

Dynamical Decoupling: Noise Shaping Filters with 1 π-pulse

Dynamical Decoupling: Noise Shaping Filters with 2 π-pulses

Dynamical Decoupling: Noise Shaping Filters with $N \pi$ -pulses

Carr – Purcell (– Meiboom – Gill) Sequence

 $\frac{\tau}{N}$

10

4

Frequency, f (MHz)

 $\frac{\tau}{N}$

2N

 $\tau = 1 \ \mu s$

S ~ 1/f

6

CP(MG) UDD

8

Noise Spectroscopy

Qubit Noise Spectroscopy Filter Engineering & Optimal Control

Y. Sung, ..., WDO, Nature Communications 10, 3715 (2019) F. Yan, ..., WDO, Nature Communications 7, 12964 (2016) F. Yan , ..., WDO, Nature Communications 4, 2337 (2013)

Carr – Purcell (– Meiboom – Gill) Sequence

Dispelling Myths About QC

- Quantum computers will not replace classical computers
- Quantum computers will not break encryption soon
 - RSA 2048-bit keys: around 4000 error corrected qubits
 - Bitcoin encryption: around 2300 error corrected qubits
- However, one should not wait until a quantum computer can break RSA to switch to post-quantum encryption

Quantum Engineering

Quantum Engineering is the bridge connecting science, mathematics, and classical engineering

Randomized Benchmarking

Single-qubit randomized benchmarking

J. Emerson *et al. J. Opt. B* 7, S347 (2005)
 E. Knill *et al. Phys. Rev. A*. 77, 012307 (2008)
 E. Megesan *et al. Phys. Rev. Lett.* 106, 180504 (2011)

- Goal: estimate the average error rates of quantum gates.
- (Clifford-based) Randomized Benchmarking [1,2,3]
 - Initialize qubits at the ground state.
 - Apply *m* randomly chosen Clifford gates (C_1 , C_2 , ..., C_m).
 - At the end, apply the inverse gate s.t. the entire operation = Identity.
 - Measure the survival probability of the ground state (= "sequence fidelity" F_{seq}).
 - ✓ In the absence of error \rightarrow $F_{seq} = 1$.
 - ✓ In the presence of error \rightarrow $F_{seq} < 1$.

Twirling over Cliffords \rightarrow Depolarization of the gate error [1,2,3]

$$ho
ightarrow p
ho + rac{(1-p)}{2^n}I$$
 (*n*: # of qubits)

- F_{seq} will decay exponentially as $F_{seq} = Ap^m + B$.
- The average error rate per Clifford r_{Cliiford} is related to p as

$$r_{\text{Clifford}} = (1-p) \times \frac{2^n - 1}{2^n}$$

Randomized Benchmarking

Single-qubit randomized benchmarking

- Goal: estimate the average error rates of quantum gates.
- (Clifford-based) Randomized Benchmarking [1,2,3]
 - Initialize qubits at the ground state.
 - Apply *m* randomly chosen Clifford gates (C_1 , C_2 , ..., C_m).
 - At the end, apply the inverse gate s.t. the entire operation = Identity.
 - Measure the survival probability of the ground state (= "sequence fidelity" F_{seq}).
 - ✓ In the absence of error \rightarrow $F_{seq} = 1$.
 - In the presence of error $\rightarrow F_{seq} < 1$.

Measurement of the avg. error rate per 1QB Clifford

- Fit F_{seq} with exponential $(f(x) = Ae^{Bx} + C)$.
- Extract depolarizing rate p, where $p = e^B$.
- *A*, *C*: absorbs the SPAM error.
- The average error rate per 1QB Clifford gate r,

$$r_{\text{Clifford}} = (1-p) \times \frac{2^n - 1}{2^n} = \frac{1-p}{2}$$

(n: # of qubits)

Interleaved Randomized Benchmarking

- **Reference** (1QB) randomized benchmarking ($F_{seq, ref}$)

- Interleaved (1QB) randomized benchmarking ($F_{seq, int}$)

- Interleaved Randomized Benchmarking [1,2]
 - Interleave gate of interest G at every Clifford ($C_1, C_2, ..., C_m$).
 - Compare it to the reference RB to extract the error rate of *g*.
 - $F_{\text{seq, ref}} = Ap_{\text{ref}}^{m} + B$ (reference curve)
 - $F_{\text{seq, int}} = A' (p_{\text{ref}} p_g)^m + B' \equiv A' p_{\text{int}}^m + B' \text{ (interleaved curve)}$
- The average error rate per interleaved gate $r_{
 m int}$,

$$r_{\text{int}} = \left(1 - \frac{p_g}{p_g}\right) \times \frac{2^n - 1}{2^n} = \left(1 - \frac{p_{\text{int}}}{p_{\text{ref}}}\right) \times \frac{2^n - 1}{2^n}$$

[1] E. Megesan *et al. Phys. Rev. Lett.* **109**, 080505 (2012)
[2] A. D. Corcoles *et al. Phys. Rev. A.* **87**, 030301 (2013)

Two-Qubit Randomized Benchmarking

- **Reference** (2QB) randomized benchmarking ($F_{seq, ref}$)

- Interleaved (2QB) randomized benchmarking ($F_{seq, int}$)

- Measurement of the avg. error rate per interleaved gate
 - Sequence fidelity F_{seq} = the survival probability of $|00\rangle$.
 - $F_{\text{seq, ref}} = Ap_{\text{ref}}^{m} + B \text{ (reference curve)}$
 - $F_{\text{seq, int}} = A' p_{\text{int}}^m + B' \text{ (interleaved curve)}$
 - The average error rate per interleaved gate (CZ) $r_{\rm int}$,

$$r_{\rm int} = \left(1 - \frac{p_{\rm int}}{p_{\rm ref}}\right) \times \frac{2^n - 1}{2^n} = \left(1 - \frac{p_{\rm int}}{p_{\rm ref}}\right) \times \frac{3}{4}$$

• Avg. CZ fidelity $F_{CZ} = 1 - r_{int}$