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Why Quantum Computing at NASA?

Quantum computing has the 
potential to provide vastly more 
efficient computation for some 
applications
• Ability to compute what could not be 

computed even if every atom in the 
universe were a classical processor 
running for the entire age of the universe

o e.g., factoring, certain material science 
applications

• Significant speedups in other areas such 
as optimization, machine learning

• Harnesses uniquely quantum effects

Green computation
• Low energy consumption

NASA constantly confronts massively 
challenging computational problems

Computational capacity limits mission scope 
and aims

Pleiades supercomputer 
at NASA Ames

NASA QuAIL mandate: Determine the 
potential for quantum computation to enable 
more ambitious and safer NASA missions in 
the future
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Quantum 
Artificial 
Intelligence 
Laboratory 
(QuAIL)
at NASA 
Ames
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Entering Exciting New Era for Quantum Computing
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… but so far only for a toy problem 
• Quantum hardware currently too small and non-

robust for solving practical problems intractable 
on classical supercomputers

• These devices need to scale up and become 
more reliable

Bad news: Advances needed before 
quantum computing can aid with practical 
problems

Good news: Lots of research opportunities, 
hardware, tools, algorithms …

Unprecedented opportunity to invent, 
explore, and evaluate quantum 
algorithms empirically

Quantum advantage achieved 
• Perform computations not possible on 

even largest supercomputers in reasonable 
time

• Google – NASA – ORNL collaboration

F. Arute et al. (2019), 
Quantum supremacy 

using a programmable 
superconducting 

processor, Nature 574, 
505-510

New follow on paper (as of April 24, 2023):
A. Morvan, B. Villalonga, X. Mi, S. Mandrà, 
et al., Phase transition in Random Circuit 
Sampling, arXiv:2304.11119 
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also observed on the system size. When being increased
from 4 ⇥ 4 (dots) to 4 ⇥ 6 (triangles), we found that n✏

remains within the same range. The suggested weak de-
pendence provided us the confidence to conclude a lower
bound to separate the weak noise regime from the strong
noise regime. As the solid black line shown in Fig. 3G,
we identified the lowest transition point observed in the
weak-link model and use it as the empirical boundary for
the noise induced phase transition. With the phase dia-
gram constructed, we compare it with our 70-qubit RCS
experiment that we will present next. It is evident that
our system falls well within the weak noise regime, satis-
fying the requirement to fully utilize the computational
capacity of the noisy quantum processors.

Finally, we show in Fig. 4 evidence for the demonstra-
tion of beyond-classical RCS by performing the experi-
ment on a 70-qubits Sycamore chip. The random circuits
follow the same 2-dimensional pattern as Ref. [9] ABCD-
CDAB, where single-qubit gates are chosen randomly
from Z

p
X

1/2
Z

�p with p 2 {�1,�1/4,�1/2, . . . , 3/4}.
We show in SM B the fidelity of the elementary opera-
tions of the random circuit. On average, we achieve a
single-qubit Pauli error rate of 1.1(0.6) ⇥ 10�3, a read-
out fidelity of 1.3(0.4) ⇥ 10�2, and a dressed two-qubit
Pauli error rate of 6.7(2.5) ⇥ 10�3 (simultaneous two-
qubit gates and single-qubit gates), corresponding to an
intrinsic two-qubit simultaneous error rate of 4(2)⇥10�3.
We validate the digital error model by looking at patched
variations of the random circuit (see inset in Fig. 4A),
where slices of two-qubit gates have been removed, cre-
ating patched circuits for which each patch XEB can be
verified at modest computational cost. The total fidelity
is then the product of the patch fidelities. The di↵erence
between the two-patch and the three-patch fidelities is
explained by the larger error rate of the two-qubit gates
compared to the idling of the qubits for which two-qubit
gates have been removed. Computing XEB over full cir-
cuits is currently an intractable classical task. We thus
give an estimate of the fidelity obtained after 24 cycles
–marked by a star in Fig. 4A– using the discrete error
model. For this data point, we have collected 70 million
sample bitstrings for a single circuit, for which we esti-
mate a fidelity above 0.1%. In SM C1 we report fidelities
for the phased-matched version of this experiment.

We now study the two main numerical methods used to
perform RCS on classical hardware. The first method is
tensor network contraction [12–17, 26]: Ref. [16] showed
sampling from the largest circuits of Ref. [9] in 15 hours
using 512 GPUs and Ref. [26] computed the correspond-
ing XEB. The second method is based on Matrix Product
States (MPS), a popular tensor network variational rep-
resentation of 1D quantum states with limited entangle-
ment [27, 28]. Contrary to the claim of Ref. [29], we find
that given current supercomputer memory constraints
this method fails to reach a fidelity comparable to the ex-
perimental one, and furthermore o↵er worse performance
than tensor network contraction.

We report improvements in tensor network contrac-

Exp.
1 amp. 1 million noisy samples

FLOPs FLOPs XEB fid. Time

SYC-53 [9] 6.44 · 1017 2.60 · 1017 2.24 · 10�3 6.18 s

ZCZ-56 [10] 6.24 · 1019 6.40 · 1019 6.62 · 10�4 25.3 min

ZCZ-60 [11] 1.32 · 1021 1.41 · 1023 3.66 · 10�4 38.7 days

This work 4.74 · 1023 6.27 · 1025 1.68 · 10�3 47.2 yr

TABLE I. Estimated computational cost of simulation:
The second column shows the number of FLOPS needed for
the computation of a single output amplitude from the ran-
dom circuit assuming no memory constraints. This serves as
a lower bound to the computational hardness of the simula-
tion of sampling from each circuit. The last three columns
refer to the cost of the simulation of noisy sampling of 1 mil-
lion bitstrings. We use the specifications of Frontier for our
estimates, with 1.685⇥ 1018 FLOPS of theoretical peak per-
formance spread across GPUs with 128 GB of RAM each.
We assume a 20% FLOP e�ciency [14–16] and account for
the low target fidelity of the simulation in the computational
cost [14, 15, 21, 30].

tion techniques, which result in lower estimated compu-
tational costs for simulated RCS (see SM E). In Fig. 4B
we show the FLOP count (the number of multiplications
and additions) as a function of number of qubits and cy-
cles required to compute a single amplitude at the output
of a random circuit without memory constraints. This
serves as a proxy lower bound for the hardness of both
sampling and verification. For a fixed number of qubits
and increasing depth, there is a crossover in the scal-
ing of the computational cost from exponential to lin-
ear. Given a noisy experimental setup, this implies an
optimal depth for the trade o↵ between computational
hardness and fidelity: beyond the crossover, fidelity de-
creases faster than the hardness increases. The crossover
depth is consistent with a scaling

p
n, as indicated with

a dashed line. Note that this is a stronger requirement
than the anti-concentrated output distribution (Fig. 1A),
and is related to the depth at which “typical” entangle-
ment is achieved (see SM F). At 70 qubits, 24 cycles is
deep enough to saturate the exponential growth of com-
putational cost. The inset of Fig. 4A shows the growth
in computational hardness (FLOP count) over the last
few years.

A practical estimate of the computational resources
needed to simulate RCS needs to take into account the fi-
nite FLOPS computational e�ciency of a supercomputer
as well as its memory constraints and other limitations
such as finite bandwidth. Table I shows estimates of the
runtime for the approximate simulation of the largest in-
stances of RCS from Refs. [9–11] and them = 24 instance
of the current work when using the state-of-the-art meth-
ods discussed in SM E. In these estimates, we consider
sampling 1 million uncorrelated bitstrings at a fidelity
similar to that of the experiment using the current top-
performing supercomputer, Frontier. This requires the
computation of 10 million approximate probability am-

A. Morvan, B. Villalonga, 
X. Mi, S. Mandrà, et al., 
(2023) Phase transition in 
Random Circuit Sampling, 
arXiv:2304.11119 

2023 Update
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Current status of quantum algorithms

A handful of proven 
limitations on 
quantum computing

Conjecture: Quantum Heuristics will significantly broaden 
applications of quantum computing

Quantum computing 
can do everything a 
classical computer can 
do

Provable quantum 
advantage known for a 
few dozen quantum 
algorithms

and

Unknown quantum advantage for 
everything else

Status of classical algorithms
• Provable bounds hard to obtain

– Analysis is just too difficult

• Best classical algorithm not known 
for most problems

• Empirical evaluation required
• Ongoing development of classical 

heuristic approaches 
– Analyzed empirically: ran and see what happens
– E.g. SAT, planning, machine learning, etc. competitions
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Quantum-Enhanced
NASA Applications

Quantum Tools
& Programming

Novel Classical Solvers
& Simulators

Quantum Comm
& Networks

Quantum
Algorithms

Fundamental Physics 
Insights

Communication & Networks
Quantum networking  Distributed QC

Application Focus Areas
Planning and scheduling  Material science
Logistics  Machine learning

Software Tools & Algorithms
Quantum algorithm design Compiling to hardware
Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches

Solvers & Simulators
Physics-inspired classical solvers
HPC quantum circuit simulators

Physics Insights
Co-design quantum hardware

Quantum Computing: NASA Ames QuAIL Team



History and Background



Birth of Quantum Computing

Feynman and Manin recognized in 
the early 1980s that certain 
quantum phenomena could not be 
simulated efficiently by a computer
• Phenomena related to quantum 

entanglement; Bell’s inequality

Perhaps these quantum 
phenomena could be used to 
speed up more general  
computation?
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Computers as Classical Mechanical Machines

Babbage’s analytical engine was a classical mechanical 
machine

Turing machines
• The abstraction that underlies complexity theory and universal computing 

machines
• Firmly rooted in classical mechanics
• Described in classical mechanical terms

Abstraction allowed us ignore how classical computers 
are implemented physically

• When we program we don’t think about the fundamental physics

How do different models of physics affect how quickly 
we can compute? 

Babbage engine
(Computer History 

Museum)
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Fundamental questions

How do different models of physics affect how quickly we can 
compute? 
• Suggests new computation-based physics principles 

How would basing computation on a quantum mechanical model 
rather than a classical mechanical model change our notions of 
computing? 
• Quantum physics is the physics of our universe

How quickly does nature allow us to compute? 



11

What a Quantum Computer is Not

Just because a computer uses quantum effects, does not mean it is a Q Computer
• All the computers in this building make use of quantum effects
• The fundamental unit of computation, the bit, and the algorithms we design for computers did 

not change when quantum effects were used

A Quantum Computer has a fundamentally different way of encoding and 
processing information

• Quantum computers are quantum information processing devices
• They process qubits instead of bits
• They use quantum operations instead of logic gates

Also, just because a piece of hardware has a certain number of qubits, it isn’t 
necessarily a Quantum Computer

• A set of light switches, even a very large set, is not a classical computer
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Certainty and Randomness in Quantum 
Computation 

Any computation a classical computer can do, a quantum computer can do with 
roughly the same efficiency

• With the same probability of the outcome
• If the classical computation is non-probabilistic, so is the quantum one

Like classical algorithms, some quantum algorithms are inherently probabilistic and 
others are not

• First quantum algorithms were not probabilistic
‒ E.g. Deutsch-Jozsa algorithm solves problem with certainty that classical algorithms, of equivalent efficiency, 

could solve only with high probability

• Shor’s algorithms are probabilistic
• Grover’s is not intrinsically probabilistic

‒ initial search algorithm was probabilistic, but 
‒ slight variants, which preserve the speed up, are non-probabilistic
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Foundations of Quantum Computing

The power of quantum computation comes from 
encoding information in a non-classical way 

Quantum computers take advantage of quantum effects 
not available classically 
These effects can provide more efficient computation 
and higher levels of security than is available classically

• What Shor’s factoring algorithm can compute in days, would 
take a supercomputer longer than the age of the universe

• Breaks all public key encryption in standard use

The art of quantum algorithm design is figuring out how 
to harness peculiarly quantum properties for 
computational purposes

Pool of quantum properties

Quantum interference

Quantum entanglement

Quantum measurement

Non-commutative quantum operators

Quantum adiabatic theorem

Quantum discord

Quantum tunneling

Quantum no cloning theorem

Quantum sampling

Quantum population transfer

Quantum many-body delocalization



Basic Concepts for Quantum Computing
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A Simple Experiment: Photon Polarization
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A Simple Experiment: Photon Polarization
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A Simple Experiment: Photon Polarization
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Mathematically Representing Photon 
PolarizationPhoton Polarization

Polarization state of a photon

can be represented as a 2-dimensional vector of unit length

Taking horizontal |!i and vertical |"i polarizations as a basis, an arbitrary
polarization can be expressed as a superposition

| i = a|"i+ b|!i

with |a|2 + |b|2 = 1

(Allowing a and b to be complex numbers enables this formalism to
describe circular polarization as well)

|vi is Dirac’s notation for vectors. Means the same thing as ~v or v, with v

being the label for the vector

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 11 / 18
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Measurement of PolarizationMeasurement of polarization

Polarization filters are quantum measuring devices

Quantum measurements always occur w.r.t. an orthogonal subspace
decomposition associated with the measuring device

For a horizontal polarization filter, the basis in which it measures is |!i,
together with its perpendicular |"i

A photon with polarization a|"i+ b|!i is measured by a horizontal filter
as |"i (absorbed) with probability |a|2, and

|!i (passed) with probability |b|2

Any photon that has passed through the filter now has polarization |!i.

Polarization filters at other angles work in a similar way

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 12 / 18
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A Simple Experiment: Photon Polarization
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A Simple Experiment: Photon Polarization
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A Simple Experiment: Photon Polarization
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Qubits (Quantum Bits)Quantum bits, or qubits

Think polarization states of a photon!

Any 2-dimensional quantum system can be viewed as the fundamental unit
of quantum computation, a quantum bit or qubit.
Qubit state space is a 2-dimensional complex vector space

A computational basis is chosen, denoted |0i and |1i, and used to encode
classical bit values 0 and 1

Possible qubit values a|0i+ b|1i, for complex a, b with |a|2 + |b|2 = 1.

Unlike classical bits, qubits can be in superposition states such as
1p
2
(|0i+ |1i) or 1p

2
(|0i � i |1i)

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 13 / 18
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Measurement of Single QubitsMeasurement of Single Qubits

Measuring qubit a|0〉+ b|1〉 in the computational basis {|0〉, |1〉}
returns 0 with probability |a|2

returns 1 with probability |b|2

projects to state to the basis state corresponding to the measurement
result

A qubit can be measured with respect to any orthogonal basis for its
2-dimensional state space

Only one classical bit of information can be extracted from one qubit

No cloning theorem: An unknown quantum state cannot be reliably copied

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 24 / 28
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Multiple Qubits 

• Qubits combine like quantum particles not classical objects
• Quantum states combine via tensor products not direct 

products
• The quantum state space, the space of possible states of 

n quantum particles, is exponentially larger than that of 
n classical objects

• 2n instead of 2n
• Entangled states make up the bulk of this space
• No classical analog: The state of entangled multiple particle 

systems cannot be described in terms of the states of the 
individual particles
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High-level View of How State Spaces Combine
How State Spaces Combine

Let X be a vector space with basis {|↵1i, . . . , |↵ni} and Y be a vector
space with basis {|�1i, . . . , |�mi}

Classical state spaces combine via
the Cartesian product

X ⇥ Y has basis
{|↵1i, . . . , |↵ni, |�1i, . . . , |�mi}

dim(X ⇥ Y ) = dim(X ) + dim(Y )

= n +m

Quantum state spaces combine via
the tensor product

X ⌦ Y has basis
{|↵1i⌦ |�1i, |↵1i⌦ |�2i, . . . , |↵ni⌦ |�mi}

dim(X ⌦ Y ) = dim(X ) ⇤ dim(Y )

= n ⇤m

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 15 / 18
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Exponential State Space
Exponential State Space

The quantum state of an n qubit system is a vector in a 2
n
-dimensional

space

If B is the state space of a single qubit spanned by {|0i, |1i}, then a

2-qubit system B ⌦ B has basis

{|0i ⌦ |0i, |0i ⌦ |1i, |1i ⌦ |0i, |1i ⌦ |1i},

often written

{|00i, |01i, |10i, |11i},

The standard computational basis for the 2
n
-dimensional complex vector

space B ⌦ B . . .B ⌦ B of an n qubit system is

{|00 . . . 00i, |00 . . . 01i, . . . , |11 . . . 10i, |11 . . . 11i}

We’ll use the notation |5i = |101i when n is understood.

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 26 / 28
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Quantum vs. classical state spaces
Quantum versus classical state spaces

A general n-qubit state can be written as

2n�1X

i=0

↵i |ii,

where
P

i |↵i |
2 = 1

Since 2n ⌧ 2n, most n-qubit states cannot be described by the states of
the individual qubits

Most states cannot be written as the tensor product of individual
qubit states

(All states can be written as a linear combination of such states.)

States that cannot be written as the tensor product of individual qubit
states are called entangled states

These states have no classical counterpart
Eleanor G. Rie↵el (NASA ARC) How to compute with Schrödinger’s cat 24 October 2013 18 / 37
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Measurement in multiqubit systemsMeasurement of n-particle states

Any measuring device has an associated splitting of the 2n–dim state space
H into orthogonal subspaces S1, . . . , Sk with H = S1 ⇥ S2 ⇥ · · ·⇥ Sk

The only possible outcomes of a measurement are states in one of the
subspaces of the orthogonal decomposition associated with the device

Measurement is probabilistic
Depends on the amplitude of the state in each subspace
When the device measures a quantum state | i, one of the Sj ’s is
chosen with probability the square of the amplitude of the component
of | i in Sj

Measurement changes the state
To one compatible with the measurement result (in the right
subspace).
The state after measurement is the unit vector aligned with the
projection of the original state onto Sj

Eleanor G. Rie↵el (NASA ARC) How to compute with Schrödinger’s cat 24 October 2013 19 / 37
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Entangled States
Entangled states

Entangled states cannot be written as tensor product of independent qubits

Example: An EPR pair 1p
2
(|00i+ |11i)

(a0|0i+ b0|1i)⌦ (a1|0i+ b1|1i)
= a0a1|00i+ a0b1|01i+ b0a1|10i+ b0b1|11i
6= a0a1|00i+ 0|01i+ 0|10i+ b0b1|11i

=
1p
2
(|00i+ |11i)

Measurement of the first qubit yields either |0i or |1i
Measurement changes state to either |00i or |11i
Measurement of second qubit gives same result as first

Similar results when measuring in other bases

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 17 / 18



31

Entanglement, correlations, and communication

•Two people each see completely random results from their coin tosses

•Completely correlated results!

•But no way to know this unless they communicate

•There is no way to use this to communicate

•Different relativistic frames disagree about who flipped the coin first

Critically important also: the behavior when they 
measure in different basis.



Three paradigms for quantum computing

Quantum circuit model 
• Start in a known quantum state (incl. input data) 

• Apply a sequence of 1 or 2 qubit quantum logic gates 
• Measure to obtain final answer 

Adiabatic quantum computation
• Define a final Hamiltonian Hf whose ground state is the solution to the computational problem under 

consideration
• Start in the ground state of an easily implementable Hamiltonian H0 Evolve the system slowly along a path 

between H0 and Hf

• Measure to obtain final answer 

Measurement-based quantum computation
• Start in a highly entangled state that serves as the quantum resource 

• Make a series of single qubit measurements that depend on the results of previous measurements
• Interpret the results of the measurements to obtain a final answer 

32
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Quantum Computer (Circuit Model)Quantum Computation (Circuit Model)

A quantum computation consists of

initialization of n-qubit register (| i)
quantum state transformation of register

sequence of primitive (1- or 2-qubit) operations (gates) Ui that

collectively perform the transformation of the register

measurement of some or all of the qubits of the register

classical control throughout to

program which quantum steps to carry out

interpret results of quantum measurement

(I ⌦ I ⌦ U4)(U2 ⌦ I ⌦ U3)(I ⌦ U1 ⌦ I )| i
U2

U3

U1
U4

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 28 / 28



Some single qubit quantum gates 
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Some single qubit quantum gates

I :
|0i ! |0i
|1i ! |1i Identity

X :
|0i ! |1i
|1i ! |0i Negation, XX = I

T (↵) :
|0i ! e

i↵|0i
|1i ! e

�i↵|1i Variable phase shift

Y :
|0i ! �1|1i
|1i ! |0i Negation & phase shift

H :
|0i ! 1p

2
(|0i+ |1i)

|1i ! 1p
2
(|0i � |1i) Change of basis, HH = I

(H ⌦ H ⌦ · · ·⌦ H)|00 . . . 0i = 1p
2n

X

i

|ii

Note: there are infinitely many single qubit gates (e.g. ↵ 2 [0..2⇡]).

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 20 / 34

Hadamard basis:
|+> = 
|1> = 

Some single qubit quantum gates

I :
|0i ! |0i
|1i ! |1i Identity

X :
|0i ! |1i
|1i ! |0i Negation, XX = I

T (↵) :
|0i ! e

i↵|0i
|1i ! e

�i↵|1i Variable phase shift

Y :
|0i ! �1|1i
|1i ! |0i Negation & phase shift

H :
|0i ! 1p

2
(|0i+ |1i)

|1i ! 1p
2
(|0i � |1i) Change of basis, HH = I

(H ⌦ H ⌦ · · ·⌦ H)|00 . . . 0i = 1p
2n

X

i

|ii

Note: there are infinitely many single qubit gates (e.g. ↵ 2 [0..2⇡]).

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 20 / 34



A Multi-qubit quantum gate 
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Multi-qubit quantum gate

Controlled-not
Cnot : |00i ! |00i

|01i ! |01i
|10i ! |11i
|11i ! |10i

The Controlled-not, together with all single qubit gates, is universal for
quantum computation.

Observation:

all quantum gates are linear (actually unitary)

quantum computations are reversible

quantum gates do not dissipate energy

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 21 / 34

Exercise:
What does the 
CNOT do in the 
Hadamard basis?



Quantum parallelism 
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Quantum parallelism

By linearity, a superposition of inputs leads to a superposition of results

An quantum circuit can be applied to (a superposition of) all 2n possible
input values at the same time

To obtain the superposition of all values from 0 to 2n � 1:

H ⌦ H ⌦ · · ·⌦ H|00 . . . 0i 7! c(|0i+ |1i)⌦ (|0i+ |1i)⌦ · · ·⌦ (|0i+ |1i)
= c

P
|xi

For any su�ciently uniformly computable classical function f , there is a
quantum circuit Uf that computes the output in superposition in time
comparable to the computation of a single value of a classical function

Uf : |x , 0i ! |x , f (x)i

Uf : c
X

|xi , 0i ! c

X
|xi , f (xi )i

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 22 / 34



A useless example of quantum parallelism 
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A useless example of quantum parallelism

Superposition of inputs leads to superposition of results

Consider U^ : |x , y , 0i ! |x , y , x ^ yi:
Input Output

|xi ⌦ |yi ⌦ |0i |xi ⌦ |yi ⌦ |x ^ yi
1
2( |000i
+ |010i
+ |100i
+ |110i)

1
2( |000i
+ |010i
+ |100i
+ |111i)

The input and the output, the values of x , y , and x ^ y , are now entangled

Measuring the output in the standard basis randomly yields one line of the
truth table

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 23 / 34



A useful example of quantum parallelism 
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A useful example of quantum parallelism

Quantum Fourier transform:
Let F~a be the Fourier transform of ~a. There is an e�cient quantum
algorithm Q such that:

Q

⇣X
ai |ii

⌘
=

X
(F~a)j |ji.

If Uf is a quantum algorithm that computes a periodic function f then

Uf (c
X

|ii|0i) = c

X
|ii|f (i)i

Measuring the second part (f (i)) of the register yields a random value x

and collapses the state to
X

ai |ii|xi = | i ⌦ |xi

where ai 6= 0 if and only if f (i) = x . Then

Q| i =
X

(F~a)j |ji

where (F~a)j 6= 0 if j is a multiple of the frequency of f
The period of f can be computed classically from a measurement of j

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 24 / 34



Shor’s algorithm in one slide 
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Shor’s algorithm in one slide

Elementary number theory: to factor M it su�ces to find the period of
function f (x) = a

x modM for some random a, 0 < a < M

Compute f for all 2n values simultaneously using quantum parallelism

Apply a quantum Fourier transform (QFT) to get only multiples of the
inverse of the period, k 1

P

Measure. Take denominator as guess for period. We get the right answer
when k and P are relatively prime

This algorithm succeeds with high probability. Repeat if it fails.

Rie↵el NASA Perspective on Quantum Computing May 26, 2016 25 / 34



Brief glimpse of further topics



Brief Glimpse: Quantum-accelerated Constraint 
Programming

In constraint programming (CP), problems are solved 
with backtracking tree search augmented by logical 
inference 
Quantum algorithms can accelerate the inference 
process being performed at each node in the tree
These quantum inference algorithms can then be 
integrated within classical, fully-quantum, or 
partially-quantum backtracking tree search schemes
Partially quantum backtracking schemes yield 
speedups for smaller sections of the tree, intended 
for early, more resource-constrained quantum 
devices

41

Booth, Kyle EC, Bryan O’Gorman, Jeffrey Marshall, Stuart Hadfield, and Eleanor Rieffel. Quantum-accelerated global constraint filtering. In International Conference on 
Principles and Practice of Constraint Programming, pp. 72-89. 2020
Booth, Kyle EC, Bryan O'Gorman, Jeffrey Marshall, Stuart Hadfield, and Eleanor Rieffel. Quantum-accelerated constraint programming. Quantum 5 (2021): 550.

Other good target state-of-the-art 
classical algorithms for quantum 
acceleration? 



Our Contributions 

New algorithms in Quantum CONGEST-CLIQUE Model (qCCM) that succeed with high 
probability for 

• (approximately optimal) Steiner Trees 

• Directed Minimum Spanning Trees (Arborescence)

in asymptotically fewer rounds required than for 
any known classical algorithm

 → "𝒪 𝑛!/#  versus "𝒪 𝑛!/$

Exact complexity analysis of quantum and classical
algorithms reveals improvements needed 
for both to become practical!

42

A minimum spanning tree (orange) 
for the given graph (grey) 

Steiner tree (green) for 
graph with marked 
terminal nodes (red)

Phillip A. Kerger, David E. Bernal Neira, Zoe Gonzalez Izquierdo, Eleanor G. Rieffel, “Mind the Õ: asymptotically better, but still 
impractical quantum distribute algorithms,” Algorithms 16(7), 332, 2023. arXiv:2304.02825

𝒏 > 𝟏𝟎𝟏𝟖	



Wigner’s friend inequalities & Experiments
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Bong, Kok-Wei, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora Tischler, Eric G. Cavalcanti, Geoff J. Pryde, and Howard M. Wiseman. "A strong no-go theorem on 
the Wigner’s friend paradox." Nature Physics 16, 12 (2020)
H.M. Wiseman, E.G. Cavalcanti, E.G. Rieffel, A "thoughtful" Local Friendliness no-go theorem: a prospective experiment with new assumptions to suit, arXiv:2209.08491 (Accepted 
to Quantum)

Wigner friend scenario recent work 
• new inequalities, with weaker assumptions than 

Bell’s inequalities
• Proof-of-principle experiments have been done
‒ Single photon as friend

Full experiment would combine Artificial 
Intelligence and Quantum Computing
• QUALL-E

Open research directions for experiments 
between proof-of-principle and full

• Space-based experiments 
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PySA: Suite of physics inspired classical 
optimization algorithms

Features and state-of-the-art implementations:
• Modern C++17 with template metaprogramming

for high level of abstraction
• Compile time optimization for improved performance
Algorithms:
• Parallel Tempering
• Ergodic and non-ergodic Isoenergetic cluster moves
• Approximate solution using mean-field theory
Recent augmentations:
• Improved Python interface

We continuously 
update PySA with 
optimized code for 

state-of-the-art 
classical optimization, 

including physics 
inspired approaches 
we have developed

Open Source Code: https://github.com/nasa/pysa



Quantum Error Correction

Error suppression: Inhibits transitions out of the desired subspace 
Error correction: Corrects errors that have happened

Quantum error correction initially thought impossible! 
• No cloning principle: an unknown quantum state cannot be copied reliably without destroying the original 

Quantum information theory was just too interesting 
• Steane and Shor & Calderbank saw a way to finesse what had seemed insurmountable barriers to quantum 

error correction 

Now quantum error correction is one of the most developed areas
• beautiful, almost magical, effects! 
• uses properties of quantum measurement and entanglement to its advantage 

Stabilizer code formulation 
Subsystem codes; Dynamical Logical Qubits; LDPC codes; …
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Fault Tolerance

Error correction mechanisms cannot be done perfectly 
Fault tolerance: Ensures error suppression/correction do not introduce more problems than they solve 

Imprecise implementation of mechanisms may cause errors. Even accurate implementation can 
magnify errors 
• can take correctable errors to uncorrectable ones 

Threshold theorems: There exists an error rate threshold below which indefinitely long quantum 
computations can be carried out robustly 

In the gate model, a number of different threshold theorems are known. Specific theorems involve 
precise statements of error model, precision of implementation, resource quantification, distance 
measure 
How to establish a threshold theorem for adiabatic quantum computing remains a major open 
question
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HybridQ: A Hybrid Quantum Simulator for Large 
Scale Simulations

Hardware agnostic quantum simulator, designed to simulate large scale quantum circuits

Can run tensor contraction simulations, direct evolution simulation and Clifford+T 
simulations using the same syntax
Features:

Fully compatible with Python (3.8+)
Low-level optimization achieved by using C++ and Just-In-Time (JIT) compilation with JAX and Numba,
It can run seamlessly on CPU/GPU and TPU, either on single or multiple nodes (MPI) for large scale simulations, using 

the exact same syntax
User-friendly interface with an advanced language to describe circuits and gates, including tools to manipulate/simplify 

circuits.
Recent Improvements:

Commutations rules are used to simplify circuits (useful for QAOA)
Expansion of density matrices as superpositions of Pauli strings accepts arbitrary non-Clifford gates,
Open-source project with continuous-integration, multiple tests and easy installation using either pip or conda

Open source code available at https://github.com/nasa/HybridQ
S. Mandrà, J. Marshall, E. G. Rieffel, R. Biswas, HybridQ: A Hybrid Simulator for Quantum Circuits, QCS 2021, arXiv:2111.06868
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LAUNCH 
COMPLEXIlliac IV – first massively parallel computer

• 64 64-bit FPUs and a single CPU
• 50 MFLOP peak, fastest computer at the time

Finding good problems and algorithms was 
challenging

Questions at the time:
• How broad will the application be of massively 

parallel computing?
• Will computers ever be able to compete with 

wind tunnels?
NASA Ames director Hans Mark brought the 
Illiac IV to NASA Ames in 1972



Take-away points

If we were handed a robust, scalable 
quantum quantum computer today, for 
many problems, we would not know what 
algorithm to run or if quantum computers 
can help
Lots of work still to be done on quantum 
algorithms, both
• Heuristic, and 
• Those amenable to analysis and proofs 
Exciting times ahead, especially as 
prototype systems improve

Many opportunities for classical 
computing to inform quantum computing 
and to work with or as part of quantum 
computing
Many examples of quantum computing 
inspiring better classical algorithms
• Quantum-inspired algorithms
• Quantum-spurred algorithms
Hardware-algorithms codesign will be key 
to advances in coming years
Enjoy learning more about this fascinating 
field!
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Further Reading

50

Eleanor G. Rieffel, Stuart Hadfield, Tad Hogg, Salvatore Mandrà, Jeffrey Marshall, Gianni Mossi, Bryan O'Gorman, 
Eugeniu Plamadeala, Norm M. Tubman, Davide Venturelli, Walter Vinci, Zhihui Wang, Max Wilson, Filip Wudarski, 
Rupak Biswas, From Ansätze to Z-gates: a NASA View of Quantum Computing, arXiv:1905.02860

Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandrà, Bryan O'Gorman, Alejandro 
Perdomo-Ortiz, Andre Petukhov, John Realpe-Gómez, Eleanor Rieffel, Davide Venturelli, Fedir Vasko, Zhihui Wang, 
A NASA Perspective on Quantum Computing: Opportunities and Challenges, arXiv:1704.04836

Overviews of NASA QuAIL team work

Eleanor Rieffel and Wolfgang Polak 
Quantum Computing: A Gentle 
Introduction
MIT Press, March 2011 

And references therein 



With many thanks to everyone on the 
NASA QuAIL team!

QuAIL Team
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