Introduction to Quantum Computing II

Travis Humble, Oak Ridge National Laboratory

Algorithms and Applications

- Terminology
- Bernstein-Varizani Algorithm
- Variational Quantum Eigensolver Algorithm

Working Terminology

- classical algorithm: a defined sequence of transformations to solve a specific problem by manipulating a classical logic state
- quantum algorithm: a defined sequence of transformations to solve a specific problem by manipulating a quantum state
- quantum circuit: a visual schematic to represent a sequence of transformations acting on a quantum state
- quantum program: a sequence of ordered instructions for a quantum computer
- quantum application: a quantum program to solve a specific problem
- quantum advantage: an improvement in performance of a quantum application relative to a classical baseline

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

$$
\begin{aligned}
& s=101=(1,0,1) \\
& \begin{aligned}
& x=011=(0,1,1) \\
& s \cdot x(\bmod 2)=1 \cdot 0+0 \cdot 1+1 \cdot 1(\bmod 2) \\
&=0+0+1(\bmod 2) \\
&=1
\end{aligned}
\end{aligned}
$$

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

- What is a classical algorithm to solve this problem?

BestClassicalAlgorithm (n, f)
Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

1. for $i \in\{0, \ldots, n-1\}$:
2. $x_{i}=\mathbf{1}_{i}$
3. $\quad s_{i} \leftarrow f\left(x_{i}\right)$
4. end for
5. $s=s_{0} s_{1} \ldots s_{n-1}$

Sample all input strings of Hamming weight 1
Requires n queries

- What is a quantum algorithm to solve this problem?

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

Recall Hadamard gate/operator

$$
\begin{aligned}
& H:|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle \\
& H:|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle \\
& H^{\otimes n}|0\rangle^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle
\end{aligned}
$$

- What is a quantum algorithm to solve this problem?

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

Consider unitary operator, "oracle"

$$
U_{f}:|x\rangle|b\rangle \rightarrow|x\rangle|b \oplus f(x)\rangle
$$

Apply unitary operator to register

$$
U_{f} H^{\otimes n}|0\rangle^{\otimes n}|b\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|b \oplus f(x)\rangle
$$

- What is a quantum algorithm to solve this problem?

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$

Let $|b\rangle=H|1\rangle=|-\rangle$
Phase kick back shifts phase

$$
U_{f} H^{\otimes m}|0\rangle^{\otimes n}|1\rangle=\sum_{x}(-1)^{f(x)}|x\rangle|-\rangle
$$

here $m=n+1$

- What is a quantum algorithm to solve this problem?

Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$
"Phase kick back" from $|x\rangle|b \oplus f(x)\rangle$

$$
\text { If } f(x)=0
$$

$$
U_{f}|x\rangle(|0\rangle-|1\rangle)=|x\rangle|-\rangle
$$

else $f(x)=1$

$$
U_{f}|x\rangle(|0\rangle-|1\rangle)=-|x\rangle|-\rangle
$$

Putting these pieces together:

$$
U_{f}|x\rangle|-\rangle=(-1)^{f(x)}|x\rangle|-\rangle
$$

- What is a quantum algorithm to solve this problem?

Substitute $f(x)=s \cdot x$

$$
U_{f} H^{\otimes m}|0\rangle^{\otimes n}|1\rangle=\sum_{x}(-1)^{s \cdot x}|x\rangle|-\rangle
$$

Note the equivalent form

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{s \cdot x}|x\rangle=\prod_{i=0}^{n-1}\left(\left|0_{i}\right\rangle+(-1)^{s_{i}}\left|1_{i}\right\rangle\right)
$$

If $s_{i}=0$ then the i-th qubit is in $|+\rangle$
If $s_{i}=1$, then the i-th qubit is in $|-\rangle$

- What is a quantum algorithm to solve this problem?

Rotate states to computational basis

$$
H^{\otimes m} U_{f} H^{\otimes m}|0\rangle^{\otimes n}|1\rangle=\prod_{i=0}^{n-1}\left|s_{i}\right\rangle|1\rangle
$$

Measure!

$$
\begin{aligned}
& \operatorname{Prob}\left(s_{i}=0\right)=\left|\left\langle 0 \mid s_{i}\right\rangle\right|^{2} \\
& \operatorname{Prob}\left(s_{i}=1\right)=\left|\left\langle 1 \mid s_{i}\right\rangle\right|^{2}
\end{aligned}
$$

Bernstein-Vazirani Algorithm

BestQuantumAlgorithm (n, f)

Require $n \in Z^{+}, f:\{0,1\}^{n} \rightarrow\{0,1\}$
Require x , an n-qubit register
Given the black box function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with promise that

$$
f(x)=s \cdot x(\bmod 2)
$$

find the string $s \in\{0,1\}^{n}$
Require b, a 1-qubit register
Require $U_{f}:|x\rangle|b\rangle \rightarrow|x\rangle|b \oplus f(x)\rangle$

1. Initialize register x to $|0\rangle^{\otimes n}$
2. Initialize register b to |1 \rangle
3. Apply H to $x_{i} \forall i \in\{0, \ldots, n-1\}$:
4. Apply H to b_{1}
5. Apply U_{f} to x and b
6. Apply H to $\mathrm{x}_{i} \forall i \in\{0, \ldots, n-1\}$:
7. $s \leftarrow$ Measure (x)

Bernstein-Vazirani Algorithm

Notes:

- Developed by Ethan Bernstein and Umesh Vazirani in 1990's
- Requires only 1 query of the function f, i.e., the oracle U_{f}
- Returns the answer exactly
- Special case of Deutsch-Josza algorithm

BestQuantumAlgorithm (n, f)
Require $n \in Z^{+}, f:\{0,1\}^{n} \rightarrow\{0,1\}$
Require x , an n-qubit register
Require b, a 1-qubit register
Require $U_{f}:|x\rangle|b\rangle \rightarrow|x\rangle|b \oplus f(x)\rangle$

1. Initialize register x to $|0\rangle^{\otimes n}$
2. Initialize register b to $|1\rangle$
3. Apply H to $x_{i} \forall i \in\{0, \ldots, n-1\}$:
4. Apply H to b_{1}
5. Apply U_{f} to x and b
6. Apply H to $\mathrm{x}_{i} \forall i \in\{0, \ldots, n-1\}$:
7. $s \leftarrow$ Measure (x)

Bernstein-Vazirani Algorithm

Quantum circuit for BV algorithm with $n=3$

Questions?

Quantum Algorithms for Scientific Computing

- Algorithms in the quantum computing model have been found to take fewer steps to solve problems
- Quantum Simulation
- Partition Functions
- Discrete Optimization
- Machine Learning
- Factoring
- Unstructured Search
- Eigensystems
- Linear Systems
- Several physical domains motivate quantum computing as a paradigm for scientific computing
- High-energy Physics
- Artificial Intelligence
- Materials Science
- Chemistry
- Biological Systems
- Data Analytics
- Planning and Routing
- Verification and Validation

Time-dependent
 Schrodinger Equation

$$
i \hbar \frac{\partial|\Psi(t)\rangle}{\partial t}=H(t)|\Psi(t)\rangle
$$

- The eigenspectrum of the Hamiltonian is ordered with a lowest energy state
- The eigenvectors of the Hamiltonian form a complete basis for representing the state

$$
E_{0} \leq E_{1} \leq \cdots \leq E_{N}
$$

$$
|\Psi\rangle=\sum_{n} c_{n}\left|\Phi_{n}\right\rangle
$$

$$
E_{0} \leq\langle\Psi| H|\Psi\rangle
$$

Variational Quantum Eigensolver (VQE) algorithm

- Construct a candidate quantum state

$$
|\Psi(\theta)\rangle=\sum_{n} c_{n}(\theta)\left|\Phi_{n}\right\rangle
$$

- Compute the energy

$$
E(\theta)=\langle\Psi(\theta)| H|\Psi(\theta)\rangle
$$

- Compare with actual energy

$$
E(\theta)=E_{0} ?
$$

- The Variational Quantum Eigensolver (VQE) algorithm uses the bound on an operator to construct a quantum state that minimizes the observable.
- VQE was created in 2013 to combine quantum state preparation and measurement with classical search algorithms.

No? Try again!

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
1
\] \& \[
\begin{array}{|l}
\hline 1 \\
H
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }^{2}\) \\
\hline 2 \& Li \& \({ }_{8}^{4}\) \& \& \& \& \& \& \& \& \& \& 5 \& \({ }_{6} 6\) \& 7 \& 8 \& F \& 10
Ne \\
\hline 3 \& \[
\begin{array}{|l|}
\hline 11 \\
\mathrm{Na} \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|}
\hline 12 \\
\mathrm{Mg} \\
\hline
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \begin{tabular}{|l|}
13 \\
Al \\
\hline
\end{tabular} \& \begin{tabular}{|l}
14 \\
Si \\
\hline
\end{tabular} \& 15 \& 116 \& 17 \& 18
Ar

析

\hline 4 \& \[
$$
\begin{array}{|l|}
\hline 19 \\
\mathrm{~K}
\end{array}
$$

\] \& | 20 |
| :--- |
| Ca |
| 21 |
| Sc | \& 22 \& 23 \& | 24 |
| :---: |
| Cr | \& | 25 |
| :--- |
| Mn | \& 26 \& 27

Co \& \begin{tabular}{|l|}
28

Ni

\hline

 \&

29

Cu

\hline

\end{tabular} \& \[

$$
\begin{array}{|l|}
\hline 30 \\
\mathrm{Zn}
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 31 \\
\mathrm{Ga} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 32 \\
\mathrm{Ge} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 33 \\
\text { As }
\end{array}
$$

\] \& | 34 |
| :--- |
| Se | \& | 35 |
| :--- |
| Br | \& | 36 |
| :--- |
| Kr |
| Kr |

\hline 5 \& \[
$$
\begin{array}{|l|l|}
\hline 37 \\
\mathrm{Rb}
\end{array}
$$

\] \&	38
$5 r$	
:---:	
y	\& 40 \&
:---	
Nb	\& \[

$$
\begin{array}{|l}
42 \\
\mathrm{MO} \\
\hline
\end{array}
$$

\] \& 43 \& | 44 |
| :--- |
| Ru | \& 45 \& | 46 |
| :--- |
| Pd | \& | 47 |
| :--- |
| Ag | \& Cd \& In \& 50

50

Sn \& S1 \& Te \& 53 \& | 54 |
| :--- |
| $\times 8$ |

\hline 6 \& $$
\begin{array}{|l}
\hline 55 \\
\hline \text { Cs } \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{|l|}
\hline 56 \\
\mathrm{Ba}
\end{array}
$${ }^{\circ} * $$
\begin{aligned}
& 71 \\
& \mathrm{Lu} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 72 \\
\mathrm{Hf}
\end{array}
$$

\] \& -73 \& \[

$$
\begin{aligned}
& \hline 74 \\
& \mathrm{~W}
\end{aligned}
$$

\] \& | 75 |
| :--- |
| Re | \& \[

$$
\begin{array}{|l|}
\hline 76 \\
\hline \mathrm{Os} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
\hline 77 \\
\mathrm{Ir}
\end{array}
$$

\] \& | 78 |
| :--- |
| Pt | \& | 79 |
| :--- |
| Au | \& 80

Hg \& T1 \& 82 \& 83

$8 i$ \& | 84 |
| :--- |
| 80 | \& 85

At \& | 86 |
| :--- |
| Rn |

\hline 7 \& | 87 |
| :--- |
| Fr | \& \& \[

$$
\begin{array}{|c|}
\hline 104 \\
\mathrm{Rf} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 105 \\
& \mathrm{Db}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 106 \\
5 \mathrm{~g} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
107 \\
\mathrm{Bh} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
108 \\
\mathrm{Hs}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
109 \\
\mathrm{Mtt}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 110 \\
\text { Ds } \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 111 \\
\mathrm{Rg} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
\hline 112 \\
\mathrm{Cn}
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 113 \\
\mathrm{Nh}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
144 \\
\text { FI }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|l}
115 \\
\mathrm{Mc}
\end{array}
$$

\] \& | 116 |
| :---: |
| 16 | \& Ts \& | 118 |
| :--- |
| Og |

\hline \& \& $$
* \begin{array}{r}
57 \\
\text { La } \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{|c|}
\hline 58 \\
\mathrm{Ce} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 59 \\
\operatorname{Pr} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 60 \\
\mathrm{Nd} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 61 \\
\mathrm{Pm} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 62 \\
\mathrm{Sm} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 63 \\
\text { Eu } \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 64 \\
\mathrm{Gd} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 65 \\
\hline \mathrm{~Tb} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 66 \\
\hline y \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 67 \\
\mathrm{HO} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 68 \\
\text { Er }
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 69 \\
\hline \mathrm{Tm} \\
\hline
\end{array}
$$

\] \& | 70 |
| :--- |
| Yb | \& \&

\hline \& \& * 88 \& 90 \& | 91 |
| :--- |
| Pa | \& ${ }_{4}^{92}$ \& \[

$$
\begin{aligned}
& 93 \\
& \mathrm{~Np} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 94 \\
\mathrm{Pu} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 95 \\
\mathrm{Am} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 96 \\
\mathrm{Cm} \\
\hline
\end{array}
$$
\] \& 97

Bk \& $$
\begin{aligned}
& 98 \\
& \text { Cf }
\end{aligned}
$$ \& \[

$$
\begin{array}{|l|l|}
\hline 99 \\
\text { Es }
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 100 \\
& \mathrm{Fm}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 101 \\
\mathrm{Md}
\end{array}
$$

\] \& | 102 |
| :--- |
| No | \& \&

\hline
\end{tabular}

$$
\hat{H}_{\mathrm{mol}}=-\sum_{i} \frac{\nabla_{R_{i}}^{2}}{2 M_{i}}-\sum_{i} \frac{\nabla_{r_{i}}^{2}}{2 m_{i}}-\sum_{i, j} \frac{Z_{i}}{\left|R_{i}-r_{j}\right|}+\sum_{i, j>i} \frac{Z_{i} Z_{j}}{\left|R_{i}-R_{j}\right|}+\sum_{i, j>i} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

- Electronic Hamiltonian $H(R)$ depends on the nuclei coordinates R and the interaction of the electrons with the nuclei
- Born-Oppenheimer approximation assumes the electrons equilibrate while the nuclei move
- Second quantization describes electrons as fermionic fields that are created and destroyed by operators

$$
a_{p}^{\dagger}|\mathrm{vac}\rangle=\left|1_{p}\right\rangle \quad a_{p}\left|1_{p}\right\rangle=|\mathrm{vac}\rangle
$$

$$
\begin{aligned}
& H(R)=\sum_{p q} h_{p q}(R) a_{p}^{\dagger} a_{q}+\frac{1}{2} \sum_{p q s t} h_{p q s t}(R) a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{t} \\
& h_{p q}(R)=\int d \sigma \varphi_{p}^{*}(\sigma)\left(\frac{\nabla_{r}^{2}}{2}-\sum_{i} \frac{Z_{i}}{\left|R_{i}-r\right|}\right) \varphi_{q}(\sigma) \\
& h_{p q s t}=\int d \sigma_{1} d \sigma_{2} \frac{\varphi_{p}^{*}\left(\sigma_{1}\right) \varphi_{q}^{*}\left(\sigma_{2}\right) \varphi_{s}\left(\sigma_{1}\right) \varphi_{t}\left(\sigma_{2}\right)}{\left|r_{1}-r_{2}\right|}
\end{aligned}
$$

The electron spin-orbitals $\left\{\varphi_{p}\right\}$ determine how to represent the electronic state, "coordinate system"

Fermionic Representation

$$
\begin{gathered}
H(R)=\sum_{p q} h_{p q}(R) a_{p}^{\dagger} a_{q}+\frac{1}{2} \sum_{p q s t} h_{p q s t}(R) a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{t} \\
\left\{a_{p}^{\dagger}, a_{q}\right\}=\delta_{p, q} \quad \text { and } \quad\left\{a_{p}, a_{q}\right\}=0
\end{gathered}
$$

Spin Representation

$$
H(R)=\sum_{j} c_{j}(R) P_{j}
$$

$$
P_{j} \in\{X, Y, Z, I\}^{n} \quad[X, Y]=-2 i Z
$$

Jordan-Wigner transform represents the fermionic operators using spin operators and ensures the correct commutation relations are satisfied. These transformations are widely used when developing quantum applications for solving fermionic field problems, "qubitize"

$$
a_{p}^{\dagger}=\otimes_{i<p} Z_{i} \otimes \sigma_{p}^{-} \quad a_{p}=\bigotimes_{i<p} Z_{i} \otimes \sigma_{p}^{+} \quad \sigma_{p}^{ \pm}=\left(X_{p} \pm i Y_{p}\right) / \sqrt{2}
$$

- Spin Hamiltonian for H_{2} transforms to a sum of 15 multi-qubit Pauli operator
- The orbital basis for hydrogen atom is 2 spin orbitals for 2 molecular orbitals
- The molecular spin orbitals are encoded by four qubits

$$
\begin{array}{ll}
1_{\alpha} 1_{\beta}=|1,1,0,0\rangle & 1_{\alpha} 2_{\alpha}=|1,0,1,0\rangle \\
2_{\alpha} 1_{\beta}=|0,1,1,0\rangle & 2_{\alpha} 2_{\beta}=|0,0,1,1\rangle
\end{array}
$$

$$
\begin{aligned}
H(R) & =c_{0} I I I I+c_{1} Z I I I+c_{2} I Z I I+c_{3} I I Z I+c_{4} I I I Z \\
& +c_{5} Z I Z I+c_{6} I Z I Z+c_{7} Z Z I I+c_{8} I Z Z I+c_{9} Z I I Z \\
& +c_{10} I I Z Z+c_{11} Y Y X X+c_{12} X X Y Y+c_{13} Y X X Y \\
& +c_{14} X Y Y X
\end{aligned}
$$

- Quantum applications build on domain theory to be efficient
- State preparation ansatz derived from unitary coupled cluster (UCC) theory
- UCC Singles-Doubles (UCCSD) is sufficient for two-electron model
- Again, need to transform to spin representation

$$
\begin{array}{cc}
U(\theta)=\exp \left(T(\theta)-T^{\dagger}(\theta)\right) & U(\theta) \approx \prod_{m=1}^{M} e^{\tau_{m}(\theta)} \\
U_{\mathrm{SD}}(\theta)=e^{\tau_{1}(\theta)} e^{\tau_{2}(\theta)} & \tau_{m}(\theta)=T_{m}(\theta)-T_{m}^{\dagger}(\theta) \\
T_{1}(\theta)=\sum_{\substack{i \in \mathrm{occ} \\
a \in \mathrm{virt}}} \theta_{i}^{a} \hat{t}_{i}^{a} & T_{2}(\theta)=\sum_{\substack{i, j \in \mathrm{occ} \\
a, b \in \mathrm{virt}}} \theta_{i, j}^{a, b} \hat{t}_{i, j}^{a, b} \\
& \begin{array}{l}
\text { Fermionic to spin } \\
\text { transformation }
\end{array} \\
U(\theta)=e^{i \theta Y_{0} X_{1} X_{2} X_{3}}
\end{array}
$$

J. Wright, M. Gowrishankar, et al., "Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry," Materials Theory 8, 1 (2022)

UCC-Single-Doubles (UCCSD) one-parameter ansatz using a four-qubit encoding of two spin-orbitals $\left\{\varphi_{p}\right\}$

$$
U_{\mathrm{SD}}(\theta)=e^{\tau_{1}(\theta)} e^{\tau_{2}(\theta)} \longrightarrow e^{i \theta Y_{0} X_{1} X_{2} X_{3}}
$$

$$
\left|\Psi\left(\theta_{k}\right)\right\rangle=\prod_{i} U_{i}\left(\theta_{k}\right)|0\rangle \quad H(R)=\sum_{j} c_{j}(R) P_{j}
$$

- Potential energy curves of H_{2} computed with the STO-3G basis set for FCI (green solid line) and VQE (blue circles)
- Search method used the COBYLA optimizer
- Numerical simulation used state-vector calculations of the Pauli estimates.

"Benchmarking Adaptive veffiational Quantum Eigensolvers," Front Chem. 606863 (2020)

- Experimental estimates of Pauli terms introduce noise in state preparation and energy calculation
- Methods for mitigating noise and errors can improve results

FCl energies with 4-qubit frozen-core basis NaH: - 160.3034597
RbH: -2908.125112
KH: -593:5747682

This work supported by DOE ASCR program office

QUANTUM SᄃIENCE CENTER

Algorithms and Applications

- Terminology
- Quantum algorithms, quantum circuits, quantum applications
- Bernstein-Varizani Algorithm
- Oracle operators, phase kick back, quantum advantage
- Variational Quantum Eigensolver Algorithm
- Quantum chemistry, quantum application
- Fermionic and Spin Hamiltonians
- Unitary Coupled Cluster theory

Questions?

