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Note on units

Guide for the Use of the International System of Units (SI):
https://physics.nist.gov/cuu/pdf/sp811.pdf

CGS (Gauss’s) units
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The Drude theory of electric resistance

Paul Karl Ludwig Drude
July 12, 1863 – July 5, 1906

Electrical conductivity:

Electrical resistivity:
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The mean free path and the scattering time

mean-free path is the average distance between the collisions

𝑙 = 𝑣𝐹𝜏

scattering time
Fermi (not drift!!!) velocity
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Resistance and Resistivity

Within (linear) Ohm’s law, the electric field inside 
the conductor is constant because charges are 
moving with constant “terminal” velocity.

A - areaL - length
Ohm’s law:

V

Resistance      resistivity      geometric factor
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Fermi surface
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electronic mean free path with the Drude assumption
Paul Drude was wrong, but he was incredibly lucky
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estimate the actual drift (terminal) velocity

Suppose we have a wire of 1 mm in diameter carrying electric current of 1 A.

Estimate the value of vd?

1 A means that a total of 1 C of charge crosses the area in 1 s. 

Each electron carries charge e = -1.6×10-19 C and typical concentration of 
electrons in good metals: n=5x1028 1/m3

𝑄 =
𝜋𝑑2

4
× 𝑣𝑑 × 𝑒 × 𝑛 × 1 s = 1 C

therefore,
𝑣𝑑 ≈ 1.6 × 10−4

m

s - 10 times slower than a typical snail (1 mm/s)
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The summary of velocities:

Typical instantaneous velocity: 

𝑣𝑑 ≈ 1 × 10−4
m

s

𝑣𝐹 ≈ 1 × 10+6
m

s

Typical drift velocity: 

𝑣𝐹
𝑣𝑑

≈ 10+10
a ratio of:

Thermal velocity (Drude): 
𝑣𝑡ℎ ≈ 1 × 10+5

m

s
@300 𝐾

𝑣𝑡ℎ ≈ 7 × 10+3
m

s
@1 𝐾

temperature-independent

The original Drude assumption fails to 
explain the T-dependence of conductivity in 
metals. It increases with the decrease of T!
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classical motion under uniform force
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Drude model is valid and compatible with the quantum theory

As obtained from the 
simple theory
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Quasiparticles

Electron gas:

Quasiparticle spectrum in electron gas is determined by 
the  energy of free particle.
In Fermi liquid interactions between particles play 
important role.
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How to measure resistance? 2-probe vs 4-probe

I

I, V 
(multimeter)

V

- sample with leads

- sample only

In cryogenics with long leads, must use a 4-probe configuration.10 August 
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The resistivity of a metal. Why is RRR so useful?

Low temperatures (T <<  R)

impurities           e-e                 e-phonons

High (room) temperatures T >>  R)

(e-phonons)

• Direct estimate of the impurity level
• Does not require a geometric factor
• Problems with granular samples

• Practically regardless of morphology 
(crystals, films, foils, wires)

• However, RRR, does depend on 
morphology!

Residual Resistivity Ratio:

The Bloch–Grüneisen temperature:
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Characteristic magnetic fields of a superconductor
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Effects of non-pair-breaking disorder

- The BCS coherence length

- Dimensionless scattering rate (non-pair-breaking!)
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measurements of the slope of Hc2 at Tc
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cons:
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E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966)
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Upper critical field
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Track 2 lab: measure resistivity to estimate Hc2 and 

• Measure resistance R(T) at H=0, H = 1000 Oe and H = 5000 Oe.

• Determine superconducting transition temperature (offset), Tc(H).

• Calculate resistivity, , from the measured resistance, R.

• Calculate RRR – residual resistivity ratio

• Determine the upper critical field, Hc2(0), from the measured Tc(H).

• Calculate the coherence length, (0), from Hc2(0).

Formula sheet:
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Current observations:
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Magnetic measurements: basic characterization tool for SC

Magnetic field strength, H

Magnetic induction, B

Magnetic moment, m
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sl

as
The trivia:
• The strongest field in the universe: magnestar

J0243.6+6124 (an ultraluminous pulsar in the Milky 
Way): 1.6 x 109 T

• Surface of a regular neutron star: 1011 T
• The world's highest steady magnetic field generated 

by a working magnet is 45.22 T (Steady High Magnetic 
Field Facility in Hefei, China, August 2022)

• A peak indoor field of 1200 T was generated by the 

electromagnetic flux-compression (EMFC) 

technique (Japan, 2018)
• Pulsed Field (LANL) close to 100 T
• Destructibe explosive magnets: 2800 T

• surface of a strong ferromagnet: 2 T
• Maximum magnetic field withstand by a 

superconductor: BSCCO is a Type-II superconductor. 
The upper critical field Hc2 in Bi-2212 polycrystalline 
samples at 4.2 K has been measured as 200 ± 25 T

5x10-16 Guinness World Record lowest field (2013, in a hospital!)
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1 emu is:
• M of a 1 m2 loop carrying a 1 mA current
• M of a loop of radius 1.78 cm carrying a 1 A current
• Typical permanent magnet (1 mm3) ~ 1 emu

• M of a neutron star ~ 1030 emu
• The Earth’s magnetic moment ~ 8x1025 emu
• An electron spin: mB~10-20 emu
• Proton and neutron: mN~10-23 emu

• One Abrikosov vortex (0.1 mm long) ~ 10-10 emu
• Change in M due to d-wave gap < 10-10 emu/K
• Hard superconductors ~ 0.1 emu
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Demagnetization: often underestimated but extremely important
One of those “inconvenient schmutz effects.”

at very low fields:

demagnetizing factor
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Example: a disc-shaped sample for magnetic measurements

Consider a disc (e.g., cut from a transmon Nb film), 1 mm in diameter and 200 nm thick

H

If a magnetic field is directed along the plane, neglecting ,

Aspect ratio: c/a = 0.0001

If a magnetic field is directed perpendicular to the plane,

Demag-factor and correction: 

“typical” (best) sensitivity of a good magnetometer is 10-6 emu

If H = 10 Oe …10 August 
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type-I superconductor
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hysteresis is a generic feature
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m(r) in a superconductor after ZFC+H(pulse)
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Josephson effect
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Superconducting Quantum Interference  Device (SQUID)

DC SQUID AC  (RF) SQUID

flux-voltage convertors
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Josephson junction
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A more complete model of a DC SQUID
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DC SQUID and SQUID magnetometry
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Characterization by magnetization

Don’t we want to 
know what happens 

during these 
magnetization 

jumps?

(later…)
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M(H) loop measured in a thin film (SQMS material)

An example from just – accepted paper. This is magnetization 
in a Nb thin film. What are all these features?
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Visualization of the magnetic fields: magneto-optics

Source: Nano Select 1(3), 298 (2020)

Kerr

Most useful to study 
superconductors
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Faraday Effect

https://en.wikipedia.org/wiki/Faraday_rotator#/media/File:Faraday-effect.svg

V – Verdet constant

We use Bi-doped Fe garnets
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Magneto-optical setup

LIGHT POLARIZATION
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example: barcode of a credit card

SQMS Summer School10 August 
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Characterization by magnetization
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M(H) loop measured in a thin film (SQMS material)

10 August 
2023 SQMS Summer School



M(H) loop -
visualized
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5 K, 130 Oe                                                                   4 K, 40 Oe

Magnetic flux in niobium films prepared by different methods
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On RRR=R(300)/R(Tc)

A. Koethe and J. I. Moench, Preparation of Ultra High 
Purity Niobium, Materials Transactions, JIM 41, 1 (2000).

In Nb, there is a huge range of experimentally observed RRR, from about 3 to 90,000

In Rigetti thin films, RRR = 5. However, we measure Tc=9.3 K. WHY?
According to ZUS, Tc with such RRR should be below 4 K.

[1]M. Zarea, H. Ueki, and J. A. Sauls, Effects of Anisotropy 
and Disorder on the Superconducting Properties of 
Niobium, arXiv:2201.07403 (2022).grain/structural domain 

boundaries do not 
affect bulk Tc!

parallel AND serial connection

• 300 K – dominant – e-phonon scattering
• just above Tc – dominant GB
• Just below Tc, GB become SC - proximity

bulk Tc is determined by scattering inside grains10 August 
2023 SQMS Summer School



0.5 V                                      0.8 V                                     1.5 V                                   2.5 V

A part of a superconducting transmon at 5 K
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Single crystalline (100) sample after annealing

Sample 1: Before Near-Melting (NM)  Annealing Sample 2: Before 800 C Annealing

Trapped magnetic flux at 5 K after cooling in 600 Oe and setting the field to zero

Tm = 2,469 °C = 2,742 K

1.5 mm thick
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Magnetic flux penetration at 8 K after ZFC 
Sample 1: Before NM Annealing Sample 2: Before 800 C Annealing

2.5X 400 Oe

2.5X 500 Oe

2.5X 400 Oe

2.5X 450 Oe
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Quasiparticle spectroscopy using London penetration depth

gives London-like penetration depth:

For a spherical Fermi surface and j || a, the normalized superfluid density:

Magnetic penetration depth:

𝜆𝑖𝑖
2 =

𝑚𝑖𝑖𝑐
2

4𝜋𝑛𝑖𝑖𝑒
2

𝜌𝑎𝑎 =
𝑛𝑠 𝑇

𝑛𝑠 0
=

𝜆𝑎 0

𝜆𝑎 𝑇

2

= 1 −
3

4𝜋𝑇
න

0

1

1 − 𝑧2 𝑑𝑧න

0

2𝜋

cos2 𝜙 𝑑𝜙න

0

∞

cosh−2
𝜀2 + Δ2 𝜙, 𝑧

2𝑇
𝑑𝜀

Superfluid response to a magnetic field: 𝐣 = −ℝ𝐀

ℝ =
𝑒2

4𝜋3ℏ𝑐
ර

𝐹𝑆

𝑑𝑆к
𝐯𝐹 ⊗𝐯𝐹

𝑣𝐹
1 + 2න

0

∞
𝜕𝑓 𝐸

𝜕𝐸

𝑁 𝐸

𝑁 0
𝑑𝐸

𝜆𝑖𝑖
2 =

𝑐

4𝜋ℝ𝑖𝑖
𝑚𝑖𝑖 =

𝑛𝑖𝑖𝑒
2

𝑐ℝ𝑖𝑖
with the effective mass:

example

j – supercurrent

A – vector potential

- symmetric response tensorℝ
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self-resonating circuit: tunnel-diode resonator
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http://en.wikipedia.org/wiki/Image:Tunnel_diode_symbol.svg


London penetration depth: classical behavior
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London Penetration Depth in Nb of different morphologies
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identification of the in-gap states, e.g. TLS
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Conclusions

• Real materials are the bottleneck of quantum technologies. There is a 
significant lag between desired and available.

• Existing materials characterization techniques must be extended, 
improved, and adapted to address specific challenges associated with QIS 
demands.

• Novel techniques must be developed.

• Quantum sensing will play a significant role in QIS technologies.
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