

Superconducting Characterization Tools and Techniques (Part II)

Maria lavarone

08/11/2023

U.S. Quantum Information Science Summer School August 6-August 15, 2023 Fermi National Accelerator Laboratory

Outline

- Density of States
- Superconducting Gap Equation
- Electron Tunneling
- Application: planar tunnel junction
- Principle of STM/STS
- **STM** and Superconductors
- □ Vortices in Type II Superconductors
- **STM** application to Superconducting Qubits

Density of States of Metals

For free electrons:

$$\varepsilon_k = \frac{\hbar^2 k^2}{2m}$$

The density of states, i.e. the number of available states between ε and $\varepsilon + d\varepsilon$ is:

□ Very important result, but note that the E dependence is different for different dimension (1D, 2D, 3D).

- $\Box \text{ Normally } k_B T \ll \varepsilon_F \text{ even at room T}$
- □ For most metals $N(\varepsilon_F) \approx constant$
- 3 8/11/2023 USQIS Summer School

Key-ideas of the BCS theory of 1957 (**Bardeen, Cooper, Schrieffer**)

- □ The interaction of the electrons with lattice vibrations (phonons) must be important (isotope effect, high transition temperature for some metals which are poor conductors at room temperature).
- □ The electronic ground state of a metal at 0 K is unstable if one permits a net attractive interaction between the electrons, no matter how small.
- □ The electron-phonon interaction leads to a new ground state of Bosonic electron pairs (Cooper pairs) which shows all the desired properties.

BCS: Microscopic Theory of Superconductivity

1957: Bardeen, Cooper, Schrieffer Nobel:1972

PHYSICAL REVIEW

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

Theory of Superconductivity*

J. BARDEEN, L. N. COOPER,[†] AND J. R. SCHRIEFFER[‡] Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

Electron has charge -e

$$| \rightarrow \neg \mathcal{V} \mathcal{V} \mathcal{V} \rightarrow |$$

Scattering of electrons produces resistance.

A <u>current</u> generates a <u>voltage</u>, and hence cause dissipation

Electrons are paired together: Cooper pairs have charge -2e

Cooper pairs carry a supercurrent, which encounters no resistance

A supercurrent generates no <u>voltage</u>, and hence cause no dissipation

Superconductors: Gap Equation

NORMAL METAL:
$$\varepsilon_k = \frac{\hbar^2 k^2}{2m}$$

SUPERCONDUCTOR: $E = \sqrt{\varepsilon_k^2 + \Delta^2}$

SUPERCONDUCTING QUASIPARTICLE DENSITY OF STATES:

$$N_{S}(E) = N_{N}(E_{F}) \frac{|E|}{\sqrt{E^{2} - \Delta^{2}}}$$

Microscopic theory of superconductivity: Bardeen, Cooper, Schrieffer (BCS) 1957

- □ In a normal metal, electrons obey the Fermi statistics and the Pauli exclusion principle
- □ In a superconductor, electrons are paired in Cooper Pairs. They all condense in the ground state. An energy gap D opens above the Fermi energy.

Electron Tunneling

8 8/11/2023 USQIS Summer School

Electron tunneling through a potential barrier

In quantum mechanics a particle can penetrate into a barrier where it would be classically forbidden.

Electron tunneling through a potential barrier

What is the probability that an incident particle tunnels through the barrier?

Time-independent Schrödinger equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + U(z)\right)\psi(x) = E\psi(x)$$

Getting an exact result requires applying the boundary conditions at x=0 and x=L

Free electron solutions in region I and III

Exponential decay in the barrier (region II)

The electron tunnels through the barrier.

$$\psi_{I} = e^{ikx} + Ae^{-ikx}$$
$$\psi_{III} = De^{ikx}$$

$$\psi_{II} = Be^{-Kx} + Ce^{Kx}$$

 $k^{2} = 2mE/\hbar^{2}$ $K^{2} = 2m(U_{0} - E)/\hbar^{2}$ $M = S^{2} M =$

Electron tunneling through a potential barrier

What is the probability that an incident particle tunnels through the barrier?

In many situations, the barrier width L is much larger that the "decay length" 1/K of the penetrating wave ($KL \ll 1$). In this case $C \approx 0$.

Transmission coefficient: transmitted/incoming amplitudes

T
$$\approx Ge^{-2KL}$$
 where $G = 16\frac{E}{U_0}\left(1-\frac{E}{U_0}\right) = 16\frac{2m}{\hbar^2}\frac{k^2K^2}{k^2+K^2}$

T decays exponentially with the barrier width.

Application: planar tunnel junction

Tunneling electrons obey Fermi statistics:

$$f(E) = \frac{1}{\rho^{E/k_B T + 1}} \qquad \qquad E = \mathcal{E} - \mathcal{E}_F$$

Tunneling depends on the electronic density of states (DOS) of both electrodes in the junction.

Planar Tunnel Junctions

T(E,V)is the transmission factor, N_L and N_R are the density of states in the two electrodesf(E)is the Fermi function, which guaranties that the electrons tunnel from an occupied into an empty state

138/11/2023USQIS Summer School

$$k_{B}T \ll E_{F}$$
 $I = \int_{E_{F}-eV}^{E_{F}} N_{L}(E)N_{R}(E+eV)T(E,V)[f(E)-f(E+eV)]dE$

2) $eV \ll \Phi$ $T(E,V) \approx T(E_F,0)$ Transmission factor independent on energy

3) $eV \ll E_F$ $N_R(E) \approx N_R(E_F)$

$$I = N_R(E_F)T(E_F, 0) \int_{E_F - eV}^{E_F} N_L(E)[f(E) - f(E + eV)]dE$$
 I is proportional to the integral of N_L in the interval E_F+eV

Measure I(V) to obtain N_L

$$\frac{dI}{dV} \propto \int_{E_F - eV}^{E_F} N_L(E) \left[-\frac{\partial f(E + eV)}{\partial (eV)} \right] dE$$

$$\frac{dI}{dV} \propto \int_{E_F - eV}^{E_F} N_L(E) \left[-\frac{\partial f(E + eV)}{\partial (eV)} \right] dE$$

Energy resolution strongly dependent on temperature

Typical Energy Resolution:

T=300 K $\Delta E = 0.1 eV$ 4.2 K $\Delta E \sim 1.5 meV$ 300 mK $\Delta E \sim 100 \mu eV$

$$\frac{dI}{dV} \propto N_L(E_F - eV) N_R(E_F)T(E_F, 0)$$

Differential conductance directly proportional to the density of states in the sample

T = 0 K

16

Strong-coupling – details of electron-phonon coupling important

 Δ_k is complex and energy-dependent

 $\operatorname{Re}(\Delta_k) \Longrightarrow$ excitation energies

 $\operatorname{Im}(\Delta_k) \Rightarrow \operatorname{decay} \operatorname{of} \operatorname{qp} \operatorname{excitations}$ with the emission of phonons

Theory --- Eliashberg gap equation (1960) considered the retarded nature of electron-phonon coupling (not in BCS)

Results --- phonon modes $\Leftrightarrow N_S(E)$ variations

TWO
PARAMETERS $\left\{ \begin{array}{l} \mu^* \\ \alpha^2 F(\omega) \end{array} \right\}$ Coulomb pseudo-potential (repulsive interaction) $\alpha^2 F(\omega)$ electron-phonon (attractive interaction) $\alpha^2(\omega)$ electron-phonon coupling strength $F(\omega)$ phonon density of states

Bill McMillan

John Rowell

McMillan Conversion Procedure

$$\mu^*, \alpha^2 F \leftrightarrow N_S(E)$$
 iterative solution (vary $\mu^*, \alpha^2 F$)

$$T_c = \frac{\theta_D}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$

where
$$\lambda = 2 \int_0^\infty d\omega \left(\frac{1}{\omega}\right) \alpha^2(\omega) F(\omega)$$

USQIS Summer School

Experiments (Rowell & McMillan) \rightarrow excellent agreement with known phonon data and fits to tunneling data

J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, "Strong-coupling superconductivity. I," Physical Review, 148, 263 (1966).

18 8/11/2023 USQIS Summer School

Strong-coupling – details of electron-phonon coupling important

Strong-coupling SC

Some superconductors

$$\frac{2\Delta(0)}{k_B T_c} > 3.53$$

Pb ~ 4.3, Nb ~ 4.8, Hg ~ 4.6, YBCO ~ 6

Structure in tunneling (for $eV \gg \Delta$)

For weak coupling $N(0)V \ll 1$, the details of the microscopic pairing wash out

For strong coupling $N(0)V \sim 1$, the details of the phonons responsible for the pairing are revealed

Structure near $k\theta_D$ (phonon frequencies)

Scanning Tunneling Microscope

20 8/11/2023 USQIS Summer School

G. Binning & H. Rohrer (IBM, Zurich) Nobel Prize-1986

The Nobel Prize in Physics 1986 was divided, one half awarded to Ernst Ruska "for his fundamental work in electron optics, and for the design of the first electron microscope", the other half jointly to Gerd Binnig and Heinrich Rohrer "for their design of the scanning tunneling microscope."

Working Principle of the

Scanning Tunneling Microscope (STM) $I = N_R(E_F)T(E_F, 0) \int_{E_F-e_V}^{E_F} N_L(E)[f(E) - f(E + e_V)]dE$ WKB-approximation Barrier width $T(E_F, 0) \propto exp(-2\gamma)$ Barrier width $\gamma = \int_0^L \sqrt{\frac{2m\varphi}{\hbar^2}} dz = \frac{L}{\hbar} \sqrt{2m\varphi}$ Barrier height $\phi \approx \frac{\varphi_1 + \varphi_2}{2}$ Work functions $I \propto e^{-2kL} \int_{E_F}^{E_F} N_{sample}(E) [f(E) - f(E + eV)] dE$

> Main idea of the STM is to exploit the exponential decay of the tunneling current over the distance between tip and sample

Working Principle of the Scanning Tunneling Microscope (STM)

• Tunneling current

$$I \approx 18 \frac{V_s}{10000\Omega} \frac{k}{d} A_{eff} e^{-2kd} \qquad \qquad A_{eff} = \pi \times \left(\frac{1}{2} L_{eff}\right)^2 \\ L_{eff} \approx 2 \times \left[(R_t + d)/k \right]^{1/2}$$

2k [Å⁻¹]=1.025 $\Phi^{1/2}$ [eV]

What information can be accessed by STM/STS?

STM/STS

 $\frac{dI}{dV} \propto T(E_F) N_{Tip}(E_F) N_{sample}(E)$

NTUM

25 8/11/2023 USQIS Summer School

27 8/11/2023

USQIS Summer School

300 mK STM Lab at Temple University

SOUNS A SUPERCONDUCTING QUANTUM

300 mK STM Lab at Temple University

STM Capabilities

Unisoku UHV-LT ³He Scanning Tunneling Microscope

Vortices in Superconductors

31 8/11/2023 USQIS Summer School

Type I and Type II superconductors

Ginzburg-Landau Theory (1950)

order parameter
$$\psi(r) = \psi_0(r)e^{i\varphi(r)}$$

 $n_s = |\psi^*\psi| = \psi_0^2$

V. L. Ginzburg A. A. Abrikosov Nobel Prize in Physics 2003

Coherence length ξ is the length over which $\psi(r)$ changes appreciably

Ginzburg-Landau Theory (1950)

Free energy of the superconducting state:

$$g_{s}(T,H) = f_{n}(T,0) + \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} + \frac{1}{2m^{*}} |(-i\hbar\nabla - e^{*}A)\psi|^{2} + \frac{1}{2\mu_{0}}B^{2} - B \bullet H$$

$$\begin{aligned} \alpha \psi + \beta \left|\psi\right|^2 \psi + \frac{1}{2m^*} \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} \vec{A}\right)^2 \psi &= 0\\ j_s &= \frac{e^* \hbar}{2m^* i} \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right) - \frac{e^{*2}}{m^* c} \psi^* \psi \vec{A}\\ &= \frac{e^*}{m^*} \left|\psi\right|^2 \left(\hbar \nabla \phi - \frac{e^{*2}}{m^*} \vec{A}\right) = e^* \left|\psi\right|^2 \vec{v_s}\end{aligned}$$

$$\xi^2 = \frac{\hbar^2}{m^* |\alpha(T)|}$$
$$\lambda = \frac{m^*}{\mu_0 e^{*2} |\psi_0|^2}$$

L. P. Gor'kov, JETP 9, 1364(1959). A.A.Abrikosov, JETP 5, 1174(1957). ^{8/11/2023}

34

Ginzburg-Landau theory (1950)

$$f_s = f_n + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$$

• For $\alpha < 0$, solve for minimum in $f_s - f_n \dots$

$$f_{s} - f_{n} = \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4}$$
$$\frac{d}{d|\psi|^{2}} (f_{s} - f_{n}) = \alpha + \beta |\psi|^{2} = 0$$
$$\implies |\psi_{\infty}|^{2} = \frac{-\alpha}{\beta}$$

elemental superconductors

	$\xi(nm)$	λ (nm)	T _c (K)	H _{e2} (1)
Al	1600	50	1.2	.01
Pb	83	39	7.2	.08
Sn	230	51	3.7	.03

predicted in 1950s by Abrikosov

	ξ (nm)	λ (nm)	$T_{c}(K)$	$H_{c2}(T)$
Nb ₃ Sn	11	200	18	25
YBCO	1.5	200	92	150
MgB_2	5	185	37	14

 $\mathcal{B}(\alpha),$

 $g_{\mu\nu}(t)$

Abrikosov Vortices in Superconductors

Type II superconducting sample in a magnetic field

What are vortices in superconductors?
Why are they important?
What can we learn from them?

How do we study and visualize them?

Single vortex

□ Has a core circled by supercurrents

Bogoliubov QPs are confined with the vortex core with size of ξ, leading to the vortex bound states.
 Outside the core there are superconducting electron pairs (Cooper pairs)

Phase Diagram of Type II Superconductors

 $H_{c1} \approx \frac{\Phi_0}{4\pi\lambda^2}$

Alex Abrikosov Nobel Prize in Physics 2003

Phase Diagram of High Tc Superconductors

In high Tc SC due to higher Tc, smaller x and high anisotropy thermal fluctuations are not negligible. Thermally induced vibrations of the flux lattice can melt it into a "vortex liquid".

How can we see vortices and what can we learn?

43 8/11/2023 USQIS Summer School

Imaging of Vortices in Type II Superconductors

Magnetic Decoration

Order parameter and magnetic field profile of a single vortex

First image of Vortex lattice, 1967 Bitter Decoration Pb-4at%In rod, 1.1K, 195G U. Essmann and H. Trauble Physics Letters 24A, 526 (1967)

44

How Vortices can be imaged by STM?

Tunneling conductance spectra in superconductor and normal metal

(b) σ_{N} 0 -3 З eV/∆

Conductance Maps at fixed energy

 $390 \text{ x} 390 \text{ nm}^2$

H=0.15 T T=1.5 K Nb Film Thickness=100 nm

45 8/11/2023

Determination of the coherence length

390 x 390 nm²

ξ = 15±1 nm

 $H_{c2} = 1.8 \text{ T}$

Different geometries and transitions of the Vortex LatticeNbSe2 $LuNi_2B_2C$

T= 4.2 K B=1.5 T

 $170 \text{ nm} \times 170 \text{ nm}$

The vortex lattice is oriented along the (110) direction of the crystal. Y. De Wilde, M. Iavarone, Phys. Rev. Lett. 78, 4273 (1997)

Shape of a single vortex: the case of $NbSe_2$

H. Hess *Phys. Rev. Lett.***62**, 214 (1989)

Gaps modulated in the ab-plane by the CDW I. Guillamon et al. PRB 77, 134505 (2008)

 $\Delta = \Delta_0 (1 + a \cos(6\varphi))$

USQIS Summer School

- Anisotropy of the superconducting gap
- Anisotropy of the Fermi surface
- Vortex lattice

 $v_F(\vec{k})$

Gap Anisotropy in borocarbides: YNi₂B₂C

 $\Delta(\mathbf{r})$ is fourfold-symmetric with the minima along the a-axis.

Nishimori et al., Journal of the Physical Society of Japan, 73 (12) 3247 (2004)

STM applied to Superconducting Qubits

50 8/11/2023 USQIS Summer School

Nb Surface and Surface Treatments

Nb Thin Films- Local Gap Variation

Presence of Magnetic Moments

Time-reversal violated:

new states in the gap

 $JSN_0 \approx 1$

 $|JSN_0| \ll 1$

8/11/2023

53

Exchange interaction breaks pairs!

state in midgap

state near gap edge

 $E_0 \approx 0$

 $E_0 \approx \Delta_0$

Density of states

0.0

0.5

1.0

1.5

2.0

2.5

 $(JS\pi N_0/2)$

 $(JS\pi N_0)$

Kondo spin-flip tunneling

Shiba Bands

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

ω/Δ Rusinov, A. I., 1968, Zh. Eksp. Teor. Fiz. Pis'ma Red. 9, 146 JETP Lett. 9,851969 Shiba, H₃₃1968, Prog. Theor. Phys. 40, 435. Yu, L., 1965, Acta Phys. Sin. 21, 75.

USQIS Summer School

 \mathcal{E}_0 =

A. V. Balatsky et al. , Rev. Modern Phys. 78, 373 (2006)

In-gap States

Conclusions

Measurements of the quasiparticle density of states spatially resolved (gap maps, localized and extended defects...)

- Usualization of vortices up to the upper critical field and allows to extract the superconducting coherence length ξ .
- Correlate superconducting parameters Δ , ξ with surface treatments and qubit measurements.

