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Long Baseline Neutrino 
Oscillation Experiments

 Interesting because not predicted by Standard Model.  
Imply neutrino mass.  Potential for CP violation.

 Need: L, E, flavor
 Low interaction rate, so need large mass, flux
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L (distance) E (energy)
flavor

Babak Abi et al. JINST, 15(08):T08008, 2020.



Measuring Energy isn’t Easy
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P. Adamson et. al. Nucl.Instrum.Meth.A 806 (2016) 279-306

 Can’t focus neutrinos → must measure 
energy

 Can select quasielastic (QE) processes → 
reconstruct (anti)neutrino energy from lepton

 Can add all energy calorimetrically
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Complications: Nuclear Effects
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2p2h

QE

RES

 Nuclear effects
 Final State Interactions (FSI):

 Additional nucleons
 Pions absorbed
 Hadron momenta changed

 2p2h
 (Anti)neutrino interacts with pair of 

nucleons
 Looks like QE, but energy 

reconstruction is not the same

 Effects on experiments
 QE reconstruction: backgrounds
 Calorimetric reconstruction: 

missing energy
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Correct Using Simulation

 MC simulation predicts energy smearing → correction
 Price: systematic uncertainties
 Simulation uncertainties driven by cross section 

measurements...
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Acero, M. A. et al. Improved measurement of neutrino oscillation parameters by the
NOvA experiment. Phys. Rev. D 106, 032004 (2022).



MINERvA Measures 
(Anti)Neutrino Cross Sections

 (Anti)neutrino cross section experiment in NuMI beam at 
Fermilab through Spring 2019

 CH, C, Fe, Pb, He, and water targets
 2 energy ranges: <Eν> ~ 6 GeV and 3 GeV

 12x1020 protons on target in FHC (neutrino-dominated) and RHC 
(antineutrino-dominated)

 44 publications and counting!
 Quasielastic
 Pions
 Inclusive
 DIS + SIS
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Not Many O(10 MeV) Neutron 
Measurements

 Produced by (anti)neutrinos
 SuperK: thermal neutron multiplicity from atmospheric 

antineutrinos(1)

 SNO: Also thermal neutrons from atmospheric 
antineutrinos(2)

 ANNIE plans to measure(3)

 All rely on capture, so little sensitivity to neutrons that 
obscure calorimetric reconstruction!

 GEANT: 10-100 MeV neutron inelastic interactions 
from cascade tuned to O(1 GeV) neutrons?
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Neutrons at MINERvA

 MINERvA sees neutrons
 Inelastic scatters at KE >= 10 MeV
 De-excitation photons

 Evidence that neutron production not well-modeled… but detector-
dependent

 Nature physics with neutrons recently: measured axial vector form factor(4)
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M. Elkins et. al. Phys. Rev. D 100, 052002 (2019)



Neutrons at MINERvA
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M. Elkins et. al. Phys. Rev. D 100, 052002 (2019)
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M. Elkins et. al. Phys. Rev. D 100, 052002 (2019)



Neutrons Across Energy Ranges
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<E
ν
> ~ 3 GeV

M. Elkins et. al. Phys. Rev. D 100, 052002 (2019)

<E
ν
> ~ 6 GeV

 Same shape as low energy result but more efficient
 Same over-prediction of neutrons at low energy deposit
 Still no definitive cause



Multi-Neutron Cross Section
 Where we can make 

measurement:
 Available energy < 

100 MeV → fewer 
backgrounds, more 
QE-like

 2 or more neutrons 
with KE > 10 MeV 
each

 Lots of 2p2h
 FSI introduces other 

processes
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Part II: Measurement 
Techniques
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The MINERvA Experiment

 Main INjector ExpeRiment 
for v-A scattering at Fermilab

 We measure (anti)neutrino 
cross sections!

 Technology: polystyrene 
(CH) fine-grained scintillator 
tracker

 Passive nuclear targets 
illuminate nucleus 
dependence
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Nucl. Inst. and Meth. A743 (2014) 130

Neutrinos



MINERvA’s Tracker
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 MINOS data provides precise muon 
momentum

 Tracker consists of stacked planes 
of scintillator strips

 Each strip sees charge as light
 Put 3 views of strips together to 

reconstruct 3D images
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Reconstructing Available Energy
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 Designed to 
estimated energy 
transfer

 Add up energy not 
in muon (black 
points)

 Subtract energy of 
neutron candidates 
(blue points)



Neutron Detection
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 Charge deposits far from 
vertex are neutron-like

 Energy deposits less than 
1.5 MeV are likely 
backgrounds

 Eavailable < 100 MeV 
removes events with 
neutral pions

 Cross-talk and 
uncorrelated beam activity 
only become significant at 
1.5 m from vertex



Neutron Counting
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 Combine neutron “seeds”, or clusters, to count neutrons
 First combine seeds within each view, or scintillator orientation
 Then combine candidates across views if reconstructed x positions similar 

enough

 Important to avoid double-counting
 Candidates from Nature paper plus lower energy activity



What Neutrons does MINERvA 
See?
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 MENATE_R is a neutron transport 
simulation driven by nuclear physics cross 
sections

 MoNA(7) measured neutron multiplicity 
and compared MENATE_R to GEANT

 MENATE_R much closer to data
 Built MINERvA uncertainty from this = GEANT

MENATE_R: Data-Driven Neutron Transport

 Fairly high acceptance for individual neutrons
 Acceptance dies off at < 10 MeV, and > 100 

MeV not common in sample

https://www.osti.gov/pages/servlets/purl/1454859


Cross Section Method
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 pTμjj: muon transverse momentum
 Proxy for momentum transfer
 Can be measured without dependence on hadronic model
 Easy to compare with models and other measurements

 Nselected
i: number of reconstructed multi-neutron antineutrino interactions

 αik: background scale factors driven by data

 εj: efficiency and acceptance correction

 Uij: unsmearing matrix estimated using simulation with d’Agostini unfolding
 Φ: integral of antineutrino flux at detector
 Nnucleons: number of antineutrino interaction targets in MINERvA’s active tracker



Antineutrino Interaction Model
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 Reweights on top 
of GENIE 2.12.6

 MnvTunev1
 2p2h enhancement
 RPA modification
 Non-resonant pion 

suppression

 2p2h enhancement 
motivated by 
multiple LE 
measurements

Phys. Rev. Lett. 116, 071802  Phys. Rev. Lett. 120, 221805 (2018)



Background Samples
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 Tune MC background 
prediction using data 
sidebands

 Two sidebands: QE-
rich and pion-rich

Selected 0-1 Neutrons

High E
avail



Constraint Results
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Before Fit / After Fit

Selected 0-1 Neutrons

High E
avail



Constraint Results
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 Tune does job: data closer to 
prediction

 Uncertainties much smaller 
because tune for each systematic

 Antineutrino QE-like 
enhancement consistent with 
Bashyal et al.

Selected 0-1 Neutrons

High E
avail



Unfolding
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 MINERvA has 
great resolution 
for pTμj

 d’Agostini 
iterative 
unfolding

 Chose 3 iterations



Efficiency and Acceptance
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 Estimated by MC 
simulation

 Generally flat, 
especially at peak 
of event rate

 Gradual drop at 
high pT driven by 
muon angular 
acceptanceMuon

Beam



Antineutrino Flux at MINERvA
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Antineutrino Flux

 2 data eras: Low Energy (LE) and 
Medium Energy (ME)

 ME ~ NOvA era, BUT MINERvA is on 
axis

 ν-e scattering and inverse muon decay[8] 
constraint tuned flux prediction using 
data

 Thank you Fermilab Accelerator 
Division for many years of quality beam

P. Adamson et. al. Nucl.Instrum.Meth.A 806 (2016) 279-306



Part III: Measurements
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Reminder: Signal Definition

 Antineutrino CC interaction
 2 GeV < pμj < 20 GeV

 θμj < 20 degrees

 2 or more neutrons
 KE > 10 MeV

 Available energy < 100 MeV
 Energy from pions, protons, 

photons, kaons, lambdas, etc.
 Does not include neutron energy
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Uncertainties
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 Statistical uncertainty 
very small because 
ME era has 7x 
protons on target 
from LE era!

 “Initial state models” 
includes 2p2h model 
uncertainties

 “GEANT” 
dominated by 
MENATE_R 
reweight



Cross Section and MnvTunev1
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 MnvTunev1 over-
predicts

 No model falls off 
at high transverse 
momentum like 
measurement does

 Measurement 
uncertainties are 
smaller than 
difference between 
leading models



Cross Section and GENIE v3
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 Two 2p2h models: 
Valencia(5) and Dytman’s(6) 
empirical tuning

 Two FSI models: single-step 
(hA) and multi-step (hN)

 All GENIE v3 models closer to 
measurement than MnvTunev1

 Valencia models closer than 
empirical 2p2h

 Most models fall off at high pT 
like measurement



Future Neutron Measurements
 7x statistics in ME data → neutrons in 

different nuclei
 David Last preparing QE-like cross 

section with neutron selection and 
neutron observables
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Material # Antineutrino 
Interactions

Carbon 2694

Iron 11345

Lead 11926

Water 7056

CH 108100



Conclusions

 Neutron modeling is an important source of uncertainty 
for long baseline neutrino oscillation experiments

 MINERvA saw evidence that models were predicting 
too many neutrons.  ME data sees same trend.

 Multi-neutron cross section enhanced too much by most 
models.  Detector- and model-dependence reduced!

 MENATE_R neutron models important
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Thank You
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Ryan Postel, 2023
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Example Neutron Backgrounds
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low q
3
 ~ low E
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How Neutrino Beams are 
Made: The NuMI Beam
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P. Adamson et. al. Nucl.Instrum.Meth.A 806 (2016) 279-306

http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/accel.html

 Start with proton beam
 Focus pion beam

 Select neutrino or antineutrino by meson charge
 Sculpt energy spectrum

 Wait for kaons, pions, and muons to decay



MINERvA’s Model Tunes
 GENIE: Generates Neutrino Interactions for Experiments

 Simulates kinematics of initial neutrino interaction and propagation out of the nucleus
 Low energy: 2.8.4
 Medium energy: 2.12.6 (Valencia 2p2h added)

 MnvTunev1: GENIE 2.12.6 with the following tunes:
 2p2h enhancement by a Guassian up to 50% in some regions
 Valencia RPA suppression
 Non-resonant pion production suppression
 MnvTunev1.2 also includes bug fixes for relativistic kinematics of outgoing hadrons 

and suppression of coherent pion production

 MnvTunev3: reweights GENIE 2.12.6 to look like:
 The 2p2h model designed to accompany SuSA
 Bodek-Ritchie high momentum QE enhancement
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MINERvA’s Tracker
 Only read out on one end → 

timing resolution
 Modules have 4 planes → raises 

minimum proton energy for 3D 
reconstruction

40

TimingDistance from Vertex

TOF Resolution [ns]



MINERvA’s Nuclear Targets
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 Passive nuclear 
targets upstream of 
tracker

 Let us study A-
dependence of 
neutrino cross 
sections

 Determine 
interaction material 
by x, y coordinates



Neutrons at MINERvA

 MINERvA sees neutrons
 Inelastic scatters at KE >= 10 MeV
 De-excitation photons

 Evidence that neutron production not well-modeled… but detector-
dependent

 Nature physics with neutrons recently: measured axial vector form factor(4)
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M. Elkins et. al. Phys. Rev. D 100, 052002 (2019)
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