# **Overview of SRF projects for Synchrotron Light Sources in China**

### Pei Zhang (Institute of High Energy Physics, CAS)

TTC2023 Meeting, December 5-8, 2023, Fermilab

### Acknowledgement

Thanks to colleagues from the following institutes for providing materials and information.

- Shanghai Advanced Research Institute (SARI), CAS
- Institute of High Energy Physics (IHEP), CAS
- University of Science and Technology of China (USTC), CAS

# Outline

- Introduction
- Existing projects: BSRF, SSRF
- New projects: HEPS, HALF, SAPS
- SRF infrastructures
- Summary

# **Major light sources in mainland China**



### Beijing

Beijing Synchrotron Radiation Facility (BSRF) High Energy Photon Source (HEPS)

### Shanghai

Shanghai Synchrotron Radiation Facility (SSRF) Shanghai soft X-ray Free-Electron Laser facility (SXFEL)

Shanghai High Repetition Rate X-ray FEL and Extreme Light Facility (SHINE)

### Hefei

Hefei Synchrotron Radiation Facility (HLS) Hefei Advanced Light Facility (HALF)

### Others

Dalian Coherent Light Source (DCLS) Dalian Advanced Light Source (DALS) Ultrafast Transient Synchrotron Radiation Facility Shenzhen Superconducting Soft X-Ray FEL (S3FEL) Southern Advanced Photon Source (SAPS) Wuhan Photon Source (WHPS)

# **Major light sources in mainland China**



### Beijing

Beijing Synchrotron Radiation Facility (BSRF) High Energy Photon Source (HEPS)

### Shanghai

Shanghai Synchrotron Radiation Facility (SSRF) Shanghai soft X-ray Free-Electron Laser facility (SXFEL)

Shanghai High Repetition Rate X-ray FEL and Extreme Light Facility (SHINE)

### Hefei

Hefei Synchrotron Radiation Facility (HLS) Hefei Advanced Light Facility (HALF)

### Others

Dalian Coherent Light Source (DCLS) Dalian Advanced Light Source (DALS) Ultrafast Transient Synchrotron Radiation Source Shenzhen Superconducting Soft X-Ray FEL (S3FEL) Southern Advanced Photon Source (SAPS) Wuhan Photon Source (WHPS)

# **Major light sources in mainland China**



### Beijing

Beijing Synchrotron Radiation Facility (BSRF) High Energy Photon Source (HEPS)

### Shanghai

Shanghai Synchrotron Radiation Facility (SSRF)

Shanghai soft X-ray Free-Electron Laser facility (SXFEL)

Shanghai High Repetition Rate X-ray FEL and Extreme Light Facility (SHINE)

### Hefei

Hefei Synchrotron Radiation Facility (HLS) Hefei Advanced Light Facility (HALF)

### Others

Dalian Coherent Light Source (DCLS) Dalian Advanced Light Source (DALS) Ultrafast Transient Synchrotron Radiation Source Shenzhen Superconducting Soft X-Ray FEL (S3FEL) Southern Advanced Photon Source (SAPS)

Wuhan Photon Source (WHPS)

Not an exhaustive list.



### **B**eijing **S**ynchrotron **R**adiation **F**acility

# **Beijing Synchrotron Radiation Facility**

- Location: IHEP campus, Beijing city
- First synchrotron light source in China (first generation)
- Parasitic use of synchrotron on an electron-position collider (BEPC)
- Operation time: 1991-2004, 2009-now (2004-2008, upgrade to BEPCII)
- Parameters: 2.5GeV full energy injection, 250mA, 242m circumference
- Beamlines: 5 IDs, 14 beamlines, vacuum ultraviolet to hard X-ray
- SRF cavities: 2×500MHz single-cell (2 additional cavities in 2024)
- Upgrade in 2024 abandons dedicated sync. mode, keeping the parasitic exp.





7.5mos (collider)

2.0mos (sync.)

### **500MHz SRF at BEPCII/BSRF**

- Two 500MHz SRF cavity modules (KEKB-type) procured from Mitsubishi in 2004
- Collaboration between KEK and IHEP
- Assembled in IHEP, horizontal tests performed in 2006, passed acceptance
- Beam operation since 2009
- SR mode: 1.6 MV, 110 kW, heavy HOM damping, 4K



# **500MHz spare cavity for BEPCII**

- Spare cavity module in-house development launched in 2006
- Help received from KEK colleagues, for example: FPC tests both at KEK and IHEP
- Horizontal test in 2011, passed acceptance
- Installation at BEPCII in 2017 (replaced one MHI cavity), taking beam since 2017





Cryogenic results



Installed in **BEPCII** 



#### Cavity fabrication



Cavity clean assembly



Vertical test



Power couplers



HOM absorber



# **500MHz cavities for BEPCII upgrade**

- New development for BEPCII upgrade and HEPS launched in 2020
- Mechanically improved cavity geometry to reserve larger operational margin
- Cryomodule is currently being assembled (1 gate valve under repairment)



H. Zheng et al., IEEE Trans. Appl. Supercond. 31, 3500109 (2021).



### Shanghai Synchrotron Radiation Facility

# Shanghai Synchrotron Radiation Facility

- Third-generation light source in China (Shanghai city)
- Construction time: 2004-2009, Operation time: 2009-now
- Parameters: 3.5GeV, 300mA, 432m circumference (main ring)
- Upgraded in 2016-2023 for additional beamlines and third harmonic cavity
- Beamlines: 34 beamlines, 46 experimental stations
- SRF cavities: 3×500MHz CESR-type single-cell, 1×1.5GHz 2-cell



### **500MHz cavities at SSRF**

- Three 500MHz SRF cavity modules (CESR-type) from ACCEL in 2008
- Beam operation since 2009
- Nominal operation: >1.6MV per cavity, >170kW per cavity, heavy HOM damping, 4K



| )                                                       | SR-                                           | RF status                                      |                                               |
|---------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|
|                                                         | SR-R                                          | F statu                                        | IS                                            |
|                                                         | Master Free<br>Cav_Tot_Vol                    | a: 499659677<br>t: 5.09 MV                     | 7 Hz                                          |
| Pf(kW):<br>Pr(kW):<br>Vc(MV):<br>Pha(deg):<br>He_Level: | CAV1<br>153.5<br>8.72<br>1.71<br>31.4<br>67.1 | CAV2<br>167.5<br>9.75<br>1.71<br>360.0<br>66.9 | CAV3<br>163.2<br>8.02<br>1.68<br>66.3<br>67.0 |
| Vacuum:<br>Current:                                     | 6.48e-10 Tor<br>299.38 mA                     | 5.1e-10 Torr<br>Life: <b>28.22 Hr</b>          | 5.7e-10 Torr<br><b>5 751.12 A.</b>            |

300mA operation

Modules in the tunnel



### **500MHz spare cavity for SSRF**

- Spare cavity module in-house development launched in 2009
- New design: Cavity fluted beam pipe and coaxial power coupler
- Vertical tests in 2010, horizontal test in 2020, passed acceptance
- VT:  $Q_0$ =1.0e9 @ 1.5 MV and  $Q_0$  = 7.7e8 @ 2.1 MV



### 1.5GHz harmonic cavity at SSRF

- 1.5GHz 2-cell cavity module in-house development launched in 2016
- Horizontal test in 2021, beam operation since 2021 (passive cavity)
- Operation parameters: Vc>1.8MV,  $Q_0$ >2e8 (4K), bunch lengthening factor > 2



H. Hou, National Workshop on Microwave and RF Technology of Particle Accelerators, 09.2023, Yunnan, China.

# Synchrotron light sources in China



High Energy Photon Source (HEPS)

Hefei Advanced Light Facility (HALF)



Construction: 2019-2025

Construction: 2023-2028



# High Energy Photon Source (Beijing)

# <u>**High Energy Photon Source (two phases)</u>**</u>

### **HEPS project milestones**

- 28.09.2016, Project settle in Huairou (Beijing)
- 15.12.2017, Project proposal approved by NDRC (CD0 equivalent)
- 28.12.2018, Feasibility study approved by NDRC (CD1 equivalent)
- 22.05.2019, Preliminary design and budget approved by NDRC (CD2 equivalent)
- 29.06.2019, Construction start in Huairou (CD3 equivalent)
- 31.12.2025, Construction completed, national acceptance (CD4 equivalent)

### **HEPS-TF (R&D project before HEPS)**

- Schedule: 04.2016 10.2018
- Budget: 321.6 M RMB (~48 M USD)
- Objective: Key components R&D for HEPS



## Main facts

### High Energy Photon Source (HEPS)

- A diffraction-limited SR light source (4<sup>th</sup>-gen)
- One of the brightest 4<sup>th</sup>-gen SR in the world
- The 1<sup>st</sup> high-energy SR light source in China

### Main facts

- 1360.4m circumference, linac + booster + SR
- **Beam**: 6 GeV, 200 mA
- Location: Huairou Science City, Beijing
- Construction time: 06.2019 12.2025
- Budget: 4.76 B CNY (~652 M USD)(including materials, civil construction & commissioning, excluding labor costs)
- **Support**: Central government + Local government + Chinese Academy of Sciences





## **Main parameters**



 $10^{1}$ 

Photon Energy (keV)

 $10^{0}$ 

10<sup>2</sup>

- Brightness of 5×10<sup>22</sup> phs/s/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%BW at the photon energy of 21 keV, can provide X-ray with energy up to 300 keV
- 14 public beamlines in phase 1, maximum capacity of 90 BLs

| Parameter                                                                                                     | Value               | Unit   |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------|--------|--|--|
| Beam energy                                                                                                   | 6                   | GeV    |  |  |
| Circumference                                                                                                 | 1360.4              | m      |  |  |
| Lattice type                                                                                                  | 7BA                 | -      |  |  |
| Hori. Natural emittance                                                                                       | <60                 | pm·rad |  |  |
| Brightness                                                                                                    | >1×10 <sup>22</sup> | *      |  |  |
| Beam current                                                                                                  | 200                 | mA     |  |  |
| Injection mode                                                                                                | Тор-ир              | -      |  |  |
| Total energy loss to bare lattice                                                                             | 2.64                | MeV    |  |  |
| Total beam power                                                                                              | 850                 | kW     |  |  |
| Number of sectors                                                                                             | 48                  | -      |  |  |
| Bunch length (w/o, w/ HC)                                                                                     | 5.06, 29.8          | mm     |  |  |
| *: phs/s/mm <sup>2</sup> /mrad <sup>2</sup> /0.1%BW [1] Y. Jiao et al., J. Synchrotron Rad. 25, 1611–1618 (20 |                     |        |  |  |

[1] Y. Jiao *et al.*, *J. Synchrotron Rad.* 25, 1611–1618 (2018).
[2] H. Xu *et al.*, *RDTM* 7, 279–287 (2023).

### **Milestones of HEPS construction**

#### • Groundbreaking in 06.2019

- Civil construction completed in 11.2021
- First accelerator equipment installed in 07.2021
- Booster installation completed in 01.2023
- Storage-ring installation started in 02.2023
- Linac commissioning completed in 03.2023
- Booster commissioning completed in 11.2023



#### SSAs in booster RF hall



#### Booster tunnel (RF section)



### **SRF for HEPS**





166MHz quarter-wave β=1 SRF cavity (Storage ring)

In-house development (New)



500MHz KEKB-type single-cell elliptical SRF cavity (Storage ring)

In-house development (Synergy w/ BEPCII-U)

[1] P. Zhang et al., Radiation Detection Technology and Methods 7, 159-170 (2023).
[2] X. Zhang et al., SRF2021, MOPCAV010.

[3] H. Zheng et al., IEEE Trans. Appl. Supercond. 31, 3500109 (2021).

### **166MHz Proof-of-Principle cavity**

ő





| Parameter                  | Value | Unit |
|----------------------------|-------|------|
| Frequency                  | 166.6 | MHz  |
| Cavity length (main)       | 530   | mm   |
| Cavity diameter (no ports) | 397   | mm   |
| Aperture (small side)      | 80    | mm   |
| R/Q                        | 136   | Ω    |
| Geometry factor            | 54.5  | Ω    |
| Design voltage (Vc_d)      | 1.5   | MV   |
| Design gradient            | 12.5  | MV/m |
| Q0 at Vc_d                 | >1e9  | -    |
| Epeak at Vc_d              | 40.1  | MV/m |
| Bpeak at Vc_d              | 63.9  | mT   |
| Stored energy              | 15.8  | J    |

- Q<sub>0</sub> (4K) at design Vc (1.5MV): 2.4×10<sup>9</sup>
- Maximum Ep: 82 MV/m •
- Maximum Bp: 132 mT •
- FE onset: Ep = 48 MV/m •

8

12

14

Residual resistance: 2.2 n $\Omega$ •



[1] P. Zhang et al., Rev. Sci. Instrum 90, 084705 (2019). [2] X. Zhang et al., NIM-A 947, 162770 (2019).

### **166MHz Proof-of-Principle cavity (dressed)**







- Large performance degradation observed from VT to HT
  - Cause: overheating on FPC Nb tube extension, 80mm -> 120mm
  - Relocate the pickup to simplify helium jacket design



[1] X. Zhang et al., IEEE Trans. Appl. Supercond. 30, 3500208 (2020). [2] T. Huang et al., AIP Advances 11, 045024 (2021).

Freq. loop closed

# HOM damping design

- Various damping schemes investigated (HOM coupler, C-waveguides, hybrid)
  - Enlarged-beam-pipe option was chosen
- Maximum HOM power: 7kW per cavity
- Challenges: large HOM absorber, impedance, SR light collimation







# **HOM Absorber**

- In-house development launched in 2020
  - Inner diameter of the beam pipe: 505 mm, 200 ferrite tiles, 4 tiles/coupon
- Peeling of ferrite tiles due to brazing fixtures moved during the final brazing (optimized)
- 1 tile peeled off after the 10 kW power test
- 2 tiles peeled off after pure water cleaning and stored in humid air at cleanroom rinsing section for over 6 months (aggravated oxidation for the two already compromised tiles)
- Additional baking + extensive examinations by applying shear forces (30 N) on all tiles
- Optimized cleaning procedure, particle-free achieved before assembling with cavity



## **HOM-damped 166MHz cavity**



| Parameter                 | Value | Unit |  |
|---------------------------|-------|------|--|
| RF frequency              | 166.6 | MHz  |  |
| Operation T.              | 4.4   | K    |  |
| Designed V <sub>d</sub>   | 1.5   | MV   |  |
| Operation V <sub>o</sub>  | 1.2   | MV   |  |
| Ep at V <sub>d</sub>      | 40    | MV/m |  |
| Bp at V <sub>d</sub>      | 62    | mT   |  |
| Q0 at V <sub>d</sub> (VT) | >1e9  | -    |  |
| R/Q                       | 139   | Ω    |  |
| G                         | 56    | Ω    |  |

X. Zhang et al., SRF2021, MOPCAV010.

- First batch of bare cavities developed and met design goal
- First jacketed cavity performance preserved: no chemistry after LHe vessel welding, only HPR
- Optimized procedure ensure no FE onset up to Ep=60MV/m



# **166MHz cryomodule**

- Cavity string designed to ensure compactness, sync. light collimation, impedance, etc.
- First cryomodule successfully assembled and horizontal tests performed in Nov. 2023



### **166MHz cryomodule horizontal test**

- Performance demonstrated: assembly procedure, processing, cooldown
- Vc=1.2 MV,  $Q_0$ =1.4×10<sup>9</sup>, dynamic heat loss=7.4 W, radiation=0.1 µSv/h



### **HOM measurement**

- Measurement of HOMs conducted both at room-temperature and at 4K
- Measurement and simulation consistent, M2 impedance slightly higher than threshold
- simulations suggested removing one quarter of ferrite ring will help, under careful investigation









Zy\_th\_1C
Zx\_th\_1C
Zt\_SingleCavity (Simu)
Zt\_SingleCavity (Meas at RT)
Zt\_SingleCavity (Meas at 4K)

### **Frequency control**

- A comprehensive frequency control plan developed and applied
- CM01 successfully reached the target frequency of 166.6 MHz at 4 K



### **Series 166MHz modules under production**





### **HEPS SSAs**

• Two frequencies, three power levels, total RF power ~2.4MW



500MHz 100kW (BS RF Hall)



500MHz 150kW prototype (PAPS)



166MHz 260kW prototype (PAPS)



500MHz 260kW (FAT)



### Hefei Advanced Light Facility (Hefei, Anhui)

# Hefei Advanced Light Facility

- A low-energy 4<sup>th</sup>-gen storage ring light source in Hefei, Anhui
- Collaboration between USTC and IHEP on SRF, magnets, cryogenics, etc.
- Construction time: 09.2023 12.2028, Budget: ~400 M USD
- Beam: 2.2GeV, 350mA, ~480m circumference, full energy linac
- Beamlines: 10 beamlines in Phase I
- SRF cavities: 1×500MHz KEKB-type single-cell, 1×1.5GHz single-cell



**Parameters** Symbol Value  $E_0$  [GeV] 2.2 Beam energy  $I_0$  [mA] 350 Average current Harmonic number 800 h C [m] Circumference ~480 Energy spread 0.00062  $\sigma_p$ Nature emittance 85 pm rad  $\mathcal{E}_{e}$ Momentum compaction 0.00009 α Energy loss per turn (Phase I)  $U_{s1}$  [MeV] ~0.4 Energy loss per turn (Phase II)  $U_{s2}$  [MeV] ~0.6

HALF storage-ring parameters

# **500MHz main SRF at HALF**

- Two bare cavities (KEKB-type) developed and vertical tested
- Two FPCs (210kW) developed, high-power tests planned
- Ferrite HOM absorber (5kW) developed and cold tested
- Cryomodule is being developed



Power couplers









C. Wu et al., NIM-A 1050, 168176 (2023).

### **1.5GHz harmonic SRF at HALF**

- 1499.4MHz SRF cryomodule under development
  - Cavity voltage: 0.5 MV
  - SiC HOM absorber: 0.5 kW
  - Bunch lengthening factor: ~6

















### <u>Southern</u> <u>Advanced</u> <u>Photon</u> <u>Source</u> (Dongguan, Guangdong)

### **SAPS** parameters

- A mid-energy 4<sup>th</sup>-gen storage ring light source, in planning by IHEP Dongguan Branch
- Location: close to the China Spallation Neutron Source (CSNS)
- Beam: 3.5GeV, 810m circumference (main ring)
- Operation mode: 350mA high brightness mode, 500mA high-throughput mode
- RF cavity technology under evaluation: superconducting and normal conducting

IHEP Dongguan campus, Guangdong



| Parameter                             | Main  | HHC             | Unit |
|---------------------------------------|-------|-----------------|------|
| RF frequency                          | 166.6 | 499.8           | MHz  |
| Total energy loss (w/ IDs)            | 1.55  | -               | MeV  |
| Total power loss to radiation         | 800   | -               | kW   |
| Total RF voltage                      | 2     | 0.36            | MV   |
| Number of cavities                    | 4     | 1               | -    |
| Cavity type                           | SCC   | SCC<br>(active) | -    |
| RF voltage per cavity                 | >0.5  | >0.36           | MV   |
| Maximum power per cavity              | 200   | 120             | kW   |
| Nom. transmitter power per RF station | 260   | 150             | kW   |

# SRF infrastructures for synchrotron light sources

# PAPS (Beijing)

#### Platform of Advanced Photon Source Technology R&D



- Construction: 2017 2020 (500 M CNY)
- Operation: 2021 now
- SRF infrastructure
  - 4000m<sup>2</sup> hall, 500m<sup>2</sup> clean room (ISO4-7)
  - HPR, FPC baking oven, Nb3Sn oven, Nb/Cu, etc.
  - 2.5kW @ 4.5K or 300W @ 2K cryogenic system
  - 3 VT Dewar, 2 HT bunkers, 1 single-cavity cryostat
- Test capabilities
  - 200-400 cavities (couplers)/year, 20 CMs/year







Vertical test stand



# PAPS (Beijing)

#### 166MHz cavity and cryomodule

#### 500MHz cavity and cryomodule



1.3GHz cavity and cryomodule

#### 650MHz cavity

#### 324MHz double-spoke





# **SAPS-TP (Guangdong)**

#### Southern Advanced Photon Source – Test Platform



- Construction: 2019 2022 (600 M CNY)
- Operation: 2022 now
- SRF infrastructure
- 4520m<sup>2</sup> hall, 315m<sup>2</sup> clean room (ISO4/6)
- 850W @ 4.5K or 100W @ 2K cryogenic system
- 2 VT Dewar, 1 HT bunkers, 1 single-cavity cryostat



# Summary

- Both synchrotron light sources and FELs are booming in China
- SRF technology adopted by most new projects
- 500MHz SRF remains a popular choice for synchrotrons, with HEPS developed a new 166MHz SRF module



List of synchrotrons adopted SRF technology Existing machine under upgrade

- Beijing Synchrotron Radiation Facility (BSRF)
- Shanghai Synchrotron Radiation Facility (SSRF)

#### **New projects**

- High Energy Photon Source (HEPS)
- Hefei Advanced Light Facility (HALF)

#### SRF as one possible option, under assessment

Southern Advanced Photon Source (SAPS)