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Beam Loading and Stability

I Primarily considering high beam currents in electron/positron storage
rings;

I Three important effects:
I Operating point stability (aka Robinson beam loading limit);
I Coupled-bunch instabilities in the longitudinal plane;
I Transient beam loading due to the non-uniform fill patterns.

I Under heavy beam loading both of the latter effects will be driven by the
fundamental impedance of the RF cavities:
I Instabilities: beam interacts with the impedances at synchrotron

sidebands of revolution harmonics;
I Transient beam loading: driven by the impedance at revolution harmonics.
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RF and Longitudinal Focusing

U0

VRF

TRF

τs

Trev

t

Synchronous particles

I Periodic RF voltage restores the energy lost by particles;
I Synchronous particle gains exactly the energy lost in one turn;
I Particles above nominal energy take a longer path — positive

momentum compaction;
I RF voltage slope creates a potential well (longitudinal focusing);
I Integer ratio Trev/TRF (harmonic number) is the number of stable RF

buckets where bunches of charged particles can be stored.
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Beam/Cavity Interaction

loops

RF feedback

dynamics

Longitudinal

Generator

C R L

Beam

~IG

~VC

~IB

I RLC model of the accelerating cavity
with two input currents: generator
and beam;

I Cavity voltage ~VC is defined by the
sum current;

I Low loading (~IB �~IG) — cavity
voltage is mostly defined by the
generator current;

I High loading — cavity voltage is
strongly affected by beam current;

I “Feedback loop” from cavity voltage
to beam current and back to cavity
voltage.
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Phasor Diagram

~IB

~Vc

φL

~IGφZ

~IL

~Itot

~Itot = ~IG + ~IB

φB

I Phasors at the RF frequency, cavity
voltage on X axis;

I Synchronous phase φB is determined
by the RF voltage, energy loss per
turn;

I For minimum generator power keep
loading angle φL = 0;

I Cavity is detuned to maintain proper
phase angle φZ between the total
current and the cavity voltage;

I The larger is~IB, the higher is the
detuning.
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High Beam Loading Robinson Limit
~IB

φL

~IG

φB

φZ

φZ

~VB

~VG

~Vc = ~VB + ~VG

I This elegant graphical derivation of
high current limit is from Matt Sands
(Beam-Cavity Interaction - I, 1976);

I Cavity voltage ~Vc is a sum of two
components: beam and generator
voltages;

I Since ~VB follows the beam in phase,
it provides no longitudinal focusing,
all focusing is due to ~VG;

I Focusing goes away when beam
arrives on the crest of ~VG;

I The limit is when ~VG is parallel to~IB;
I Irob = Vc

2RL sinφB
when φL = 0.
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High Beam Loading Robinson Limit and SRF
I For optimal power utilization:

I Set the coupling factor for minimum reflected power at the design current;
I Set loading angle to zero;

I With the normal conducting cavities there is a significant margin
between the design point and the Robinson limit;

I Superconducting cavities — the margin is nearly zero (Irob ≈ I0 + V 2
c

RsU0
);

I A quick example:
I NC: 30 kW wall dissipation, 1 A design, 1.6 A limit;
I SC: 30 W wall dissipation, 1 A design, 1.001 A limit;

I Fixes:
I Increase the coupling factor: 10% in the example above costs 240 W in

reflected power vs. 104 kW beam power;
I Operate with non-zero loading angle, again at the cost of the reflected

power;
I Use wideband proportional feedback around the cavity to stabilize

beam-cavity interaction, beam loading limit scales as 1 + H where H is
the feedback loop gain.
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I Operate with non-zero loading angle, again at the cost of the reflected

power;
I Use wideband proportional feedback around the cavity to stabilize

beam-cavity interaction, beam loading limit scales as 1 + H where H is
the feedback loop gain.
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the feedback loop gain.
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I With the normal conducting cavities there is a significant margin
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I Superconducting cavities — the margin is nearly zero (Irob ≈ I0 + V 2
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I A quick example:
I NC: 30 kW wall dissipation, 1 A design, 1.6 A limit;
I SC: 30 W wall dissipation, 1 A design, 1.001 A limit;

I Fixes:
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High Beam Loading Robinson Limit and SRF
I For optimal power utilization:

I Set the coupling factor for minimum reflected power at the design current;
I Set loading angle to zero;

I With the normal conducting cavities there is a significant margin
between the design point and the Robinson limit;

I Superconducting cavities — the margin is nearly zero (Irob ≈ I0 + V 2
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RsU0
);

I A quick example:
I NC: 30 kW wall dissipation, 1 A design, 1.6 A limit;
I SC: 30 W wall dissipation, 1 A design, 1.001 A limit;

I Fixes:
I Increase the coupling factor: 10% in the example above costs 240 W in

reflected power vs. 104 kW beam power;
I Operate with non-zero loading angle, again at the cost of the reflected

power;
I Use wideband proportional feedback around the cavity to stabilize

beam-cavity interaction, beam loading limit scales as 1 + H where H is
the feedback loop gain.
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High Beam Loading Robinson Limit and SRF
I For optimal power utilization:

I Set the coupling factor for minimum reflected power at the design current;
I Set loading angle to zero;

I With the normal conducting cavities there is a significant margin
between the design point and the Robinson limit;

I Superconducting cavities — the margin is nearly zero (Irob ≈ I0 + V 2
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RsU0
);

I A quick example:
I NC: 30 kW wall dissipation, 1 A design, 1.6 A limit;
I SC: 30 W wall dissipation, 1 A design, 1.001 A limit;

I Fixes:
I Increase the coupling factor: 10% in the example above costs 240 W in

reflected power vs. 104 kW beam power;
I Operate with non-zero loading angle, again at the cost of the reflected

power;
I Use wideband proportional feedback around the cavity to stabilize

beam-cavity interaction, beam loading limit scales as 1 + H where H is
the feedback loop gain.
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High Beam Loading Robinson Limit and SRF
I For optimal power utilization:

I Set the coupling factor for minimum reflected power at the design current;
I Set loading angle to zero;

I With the normal conducting cavities there is a significant margin
between the design point and the Robinson limit;

I Superconducting cavities — the margin is nearly zero (Irob ≈ I0 + V 2
c

RsU0
);

I A quick example:
I NC: 30 kW wall dissipation, 1 A design, 1.6 A limit;
I SC: 30 W wall dissipation, 1 A design, 1.001 A limit;

I Fixes:
I Increase the coupling factor: 10% in the example above costs 240 W in

reflected power vs. 104 kW beam power;
I Operate with non-zero loading angle, again at the cost of the reflected

power;
I Use wideband proportional feedback around the cavity to stabilize

beam-cavity interaction, beam loading limit scales as 1 + H where H is
the feedback loop gain.
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Resonant Modes and Revolution Harmonics
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I Storage ring circumference does not
affect the Robinson limit;

I Large rings have low revolution
frequencies — the beam is more
likely to interact with the cavity
fundamental impedance;

I A 20 kHz resonance ideally “hidden”
between two revolution harmonics.

I 500 m ring;
I 1.5 km ring;
I 3 km ring;
I 10 km ring;
I 100 km ring.
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Ring Circumference and Beam Loading

Photo/image credit: CERN, SLAC

I People don’t build multi-kilometer
rings just to spend money;

I Large circumference typically means
high energy;

I Or very high current;
I Or both;
I Large circumference means

significant beam loading of the RF
system;

I Cavity detuning can easily exceed
revolution frequency in such
machines.
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Cavity Detuning and Longitudinal Stability
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I Growth rate for mode -1 is ∝
Z (ωrf−ωrev+ωs)−Z (ωrf+ωrev−ωs);

I Symmetric on resonance;
I Growth rates peak when

fundamental crosses upper
synchrotron sidebands of
revolution harmonics;

I Instability growth times are very
small relative to the synchrotron
period;

I Such instabilities cannot be cured
by the beam feedback systems,
need to reduce the effective
impedance!
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I Growth rate for mode -1 is ∝
Z (ωrf−ωrev+ωs)−Z (ωrf+ωrev−ωs);

I Symmetric on resonance;
I Growth rates peak when

fundamental crosses upper
synchrotron sidebands of
revolution harmonics;

I Instability growth times are very
small relative to the synchrotron
period;
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by the beam feedback systems,
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I Growth rate for mode -1 is ∝
Z (ωrf−ωrev+ωs)−Z (ωrf+ωrev−ωs);

I Symmetric on resonance;
I Growth rates peak when

fundamental crosses upper
synchrotron sidebands of
revolution harmonics;

I Instability growth times are very
small relative to the synchrotron
period;

I Such instabilities cannot be cured
by the beam feedback systems,
need to reduce the effective
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I Growth rate for mode -1 is ∝
Z (ωrf−ωrev+ωs)−Z (ωrf+ωrev−ωs);

I Symmetric on resonance;
I Growth rates peak when

fundamental crosses upper
synchrotron sidebands of
revolution harmonics;

I Instability growth times are very
small relative to the synchrotron
period;

I Such instabilities cannot be cured
by the beam feedback systems,
need to reduce the effective
impedance!
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A Single Bunch Train in FCC-ee (Z)
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I Non-uniform fill pattern puts power at
the revolution harmonics and
modulates the cavity field;

I That leads to the synchronous phase
variation along the bunch train;

I Cavity voltage transient leads to
bunch length variation;

I As well as the synchrotron frequency.
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I Non-uniform fill pattern puts power at
the revolution harmonics and
modulates the cavity field;

I That leads to the synchronous phase
variation along the bunch train;

I Cavity voltage transient leads to
bunch length variation;

I As well as the synchrotron frequency.
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Dealing With Beam Loading

I Two main effects of heavy beam loading in large rings:
I Longitudinal coupled-bunch instabilities driven by the RF cavity

fundamental impedance;
I Synchronous phase transients.

I Transient effects depend on
I Total beam current;
I Fill pattern.

I Fill patterns can be designed to mitigate transient effects;
I But longitudinal instabilities due to the fundamental impedance remain

an issue even with completely uniform fills;
I Reducing beam loading in the RF system design helps both issues.
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Mitigating Beam Loading in the Design Stage

Cavity detuning

ωd =
∣∣∣ωrfI0

Vc

R
Q cosφB

∣∣∣
I Minimize the number of cavities:

I Reduces fundamental impedance interacting with the beam;
I Limited by the maximum coupler power and/or the maximum cavity

voltage.
I Minimize detuning:

I Cavities with low R/Q;
I Lower RF frequencies are preferable, especially when coupler limited;
I Low R/Q favors superconducting cavities.

I Counterphasing:
I Set the number of cavities needed based on the coupler limit;
I Run a fraction at the defocusing phase, still providing power to the beam;
I Allows one to maximize per-cavity voltage without overfocusing the beam

longitudinally.
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Low Level RF to the Rescue

loops

RF feedback

dynamics

Longitudinal

Generator

C R L

Beam

~IG

~VC

~IB

I Fundamental impedances at a
synchrotron sideband — instability
growth times below Ts/10;

I Beam feedback cannot control such
instabilities;

I RF feedback stabilizes the cavity field
— low effective impedance as seen
by the beam;

I dVC
dIB
≈ 0;

I Use wideband loops to lower the
impedance at multiple revolution
harmonics around the RF.
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PEP-II Collider

Parameter HER LER
Circumference 2.2 km
Energy 9 GeV 3.1 GeV
Beam current 2.1 A 3.2 A
Cavities 28 8
RF power 11 MW 4 MW

I Copper HOM damped cavity;
I Cavity with the HOM loads;
I Two and four cavity stations,

vector sum control, 1 MW
klystrons.
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PEP-II Fast Impedance Control

Comb loop

Cavity

Cavity

Cavity

Cavity

Direct loop gain and phase

Direct loop output
Vtotal

Klystron

Comb loop gain and phase

Station reference

∑∑

B
e
a
m

I Two feedback loops: direct
and comb;

I Open loop: 33 µs growth
time;

I Direct loop only: 333 µs
growth time;

I Direct and comb: 3.3 ms
growth time.
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I Two feedback loops: direct
and comb;
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time;

I Direct loop only: 333 µs
growth time;

I Direct and comb: 3.3 ms
growth time.
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Summary

I Large ring circumference and high beam currents make for a
challenging combination;

I RF system design should be driven by the beam loading and
longitudinal stability considerations;

I Fundamental impedance is large, but very tightly controlled, so driving
impedance reduction is feasible;

I Cavity HOMs are relatively unpredictable, need to be damped to levels
manageable by the bunch-by-bunch feedback;

I Gap transient response cannot be controlled by RF feedback (high peak
power), need to manage fill pattern gaps.
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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber

nn+1n+2

bunch n bunch n+2n+1bunch

Time

I Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

I In practice the wakefields have much
longer damping times than illustrated
here;

I Longitudinal bunch oscillation→ phase
modulation of the wakefield→ slope of
the wake voltage sampled by the
following bunches determines the
coupling.

I For certain combinations of wakefield
amplitudes and frequencies the overall
system becomes unstable.
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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber

nn+1n+2

bunch n bunch n+2n+1bunch

Time

I Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

I In practice the wakefields have much
longer damping times than illustrated
here;

I Longitudinal bunch oscillation→ phase
modulation of the wakefield→ slope of
the wake voltage sampled by the
following bunches determines the
coupling.

I For certain combinations of wakefield
amplitudes and frequencies the overall
system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

I A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

I From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

I Mode number m describes the number of oscillation periods over one
turn;

I Motion of bunch k oscillating in mode m is given by: Amei2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.

I Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
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Modal Oscillation Example

I Harmonic number of 8;
I Top plot — mode 1;
I Bottom — mode 7;
I All bunches oscillate at the same

amplitude and frequency, but
different phases;

I Cannot distinguish modes m and
N −m (or −m) from a single turn
snapshot.
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Modal Oscillation With Damping

I Same modes with damping.
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Coupled-bunch Instabilities: Eigenvalues and Impedances

I Beam interacts with wakefields (impedances in frequency domain) at
synchrotron sidebands of revolution harmonics;

I Impedance functions are aliased, since they are sampled by the beam;

I Λm = (−λ‖rad + iωs) +
παef 2

rf I0
E0hωs

Z ‖eff(mω0 + ωs);

I Effective impedance: Z ‖eff(ω) =
∑∞

p=−∞
pωrf+ω
ωrf

Z ‖(pωrf + ω)

I Normally, instabilities in the longitudinal plane are driven by higher order
modes in RF cavities and other resonances;

I In case of heavy beam loading in machines with large circumference,
situation is anything, but normal.
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Phasor Argument

~IB

~Vc

φL

~IGφZ

~IL

~Itot

~Itot = ~IG + ~IB

φB

I First idea — phase modulate the
generator to suppress the transients;

I PEP-II example: IB = 6 A, IG = 1.7 A;
I To compensate fill pattern

modulation, when IB goes to 0 in the
gap, IG would need to match IT !

I Factor of 10 in peak power.
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Single Bunch Train

0 50 100 150 200 250 300 350
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (µs)

P
h
a
s
e
 (

d
e
g
@

R
F

)

Transient is 3.0494 degrees peak−to−peak

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

Time (µs)

B
u
n
c
h
 c

u
rr

e
n
t 
(m

A
)

FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 65140by2 fill

I 0.3% gap (400 RF buckets, 1 µs);
I Uniform train of 65140 bunches with

5 ns spacing;
I Bunch length moves around by 3.4%

(peak-to-peak).
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Fill Pattern Density Modulation
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I Idea from J. Byrd et al., Phys. Rev.
ST Accel. Beams 5, 092001 (2002):
I Charge removed from the gap is

added symmetrically to both ends
of the train;

I 200 bunches removed from the gap;
I Rather than double the charge, fill

200 buckets at the ends of the train in
every bucket (2.5 ns) pattern;

I Phase transient peak-to-peak
amplitude is unchanged.
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How Does Fill Pattern Modulation Work?
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65140by2

65340 density mod

I Two fill patterns used earlier:
I 65140by2: one long train of

65140 bunches every other RF
bucket and 400 bucket gap;

I 65340 density mod: long train
with density modulation.

I Both fill pattern spectra show
notches at multiples of
h/400 ≈ 327 revolution
harmonics due to identical 400
bucket gaps;

I Density modulation suppresses
low-frequency revolution
harmonics where cavity
impedance is large.
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Does Fill Pattern Modulation Work?
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200 mA

236 mA

3.05° p2p

2.76° p2p

I Measurements from the Advanced Light
Source in Berkeley:
I A train of 296 buckets, 32 bucket gap;
I Buckets 1–16 and 281–296 filled to

twice the charge.
I A bit of first revolution harmonic due to

the detuned harmonic cavities.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a given bunch
depends only on the past motion of that bunch.

Controller

Beam Kicker structure

Back−endFront−end

SensorBPM Actuator

I Bunches are processed sequentially.
I Correction kicks are applied one turn later.
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Feedback Control Limits: Longitudinal

I Measure longitudinal position (time of arrival);
I Correct energy;
I To generate required 90° phase shift the feedback must observe at least

half a synchrotron period;
I Fastest controllable growth times on the order of 1–2 synchrotron

periods.
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Longitudinal Example from ANKA

I Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

I Growth time is 2.3Ts, damping time is Ts;
I Actual modal oscillation trajectory;
I Filter is 2/3 of a synchrotron period.
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Longitudinal Example from ANKA
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I Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

I Growth time is 2.3Ts, damping time is Ts;
I Actual modal oscillation trajectory;
I Filter is 2/3 of a synchrotron period.



Beam/Cavity
Interaction

Introduction
The focus of this talk

High Current
Stability Limit
Basics

Robinson Limit

Beam Loading
Effects
Ring Circumference and
Fundamental Impedance

Longitudinal Instabilities

Uneven Fills

Mitigation

Impedance Control Loops

Summary

Extra Slides

39/42

Longitudinal Example from ANKA
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I Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

I Growth time is 2.3Ts, damping time is Ts;
I Actual modal oscillation trajectory;
I Filter is 2/3 of a synchrotron period.
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Longitudinal Example from ANKA
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I Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

I Growth time is 2.3Ts, damping time is Ts;
I Actual modal oscillation trajectory;
I Filter is 2/3 of a synchrotron period.
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Why Two Loops
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I Direct loop gain is limited by delay;
I OK at 11 dB;
I and 14 dB;
I At 17 dB we are stop impedance

reduction;
I Worse at 20 dB.
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Trade Bandwidth for Gain
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I Double peaked comb filter at
synchrotron sidebands;

I No response at revolution
harmonics;

I Almost 20 dB of gain at synchrotron
sidebands.
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Trade Bandwidth for Gain
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A Word About Technology: RF Processing Module

I Analog direct loop: I/Q demodulation/modulation, op-amp feedback
processing;

I 86 ns delay, 3 MHz bandwidth, 450 ns total loop delay;
I Vector sum, multiple gain/phase blocks, lead/lag compensation, ripple

loop DSP.
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A Word About Technology: RF Processing Module
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I Analog direct loop: I/Q demodulation/modulation, op-amp feedback
processing;

I 86 ns delay, 3 MHz bandwidth, 450 ns total loop delay;
I Vector sum, multiple gain/phase blocks, lead/lag compensation, ripple

loop DSP.
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