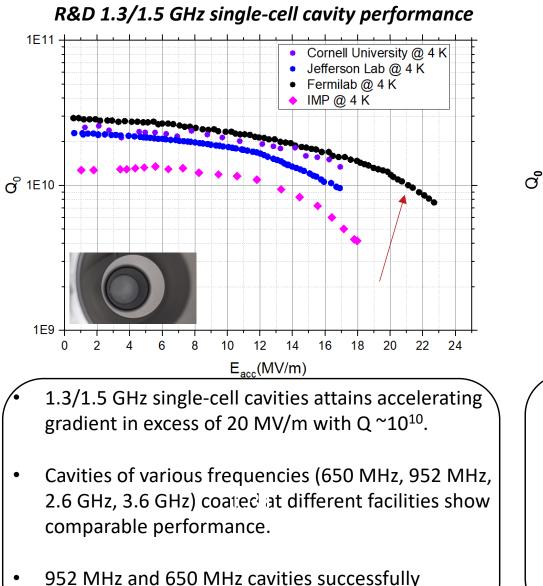
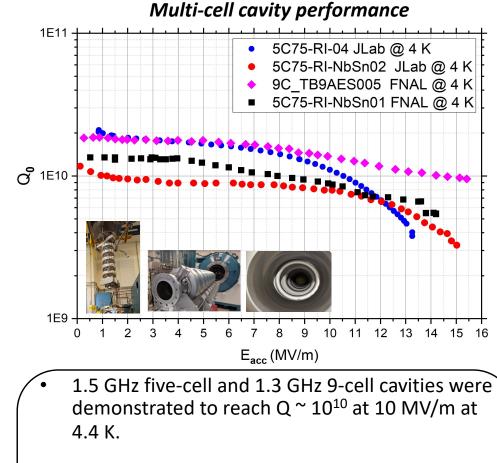


Performance of vapor-diffused Nb₃Sn grown on Nb

Uttar Pudasaini

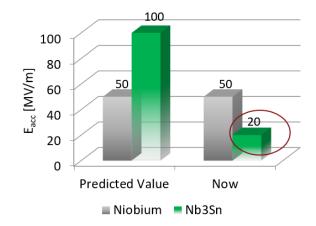

Sunday, December 3, 2023

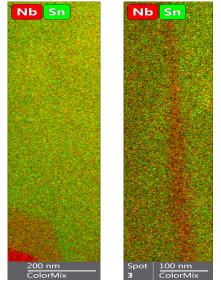


Performance of vapor-diffused Nb₃Sn grown on Nb

operated with cryocoolers.

TTC-2022

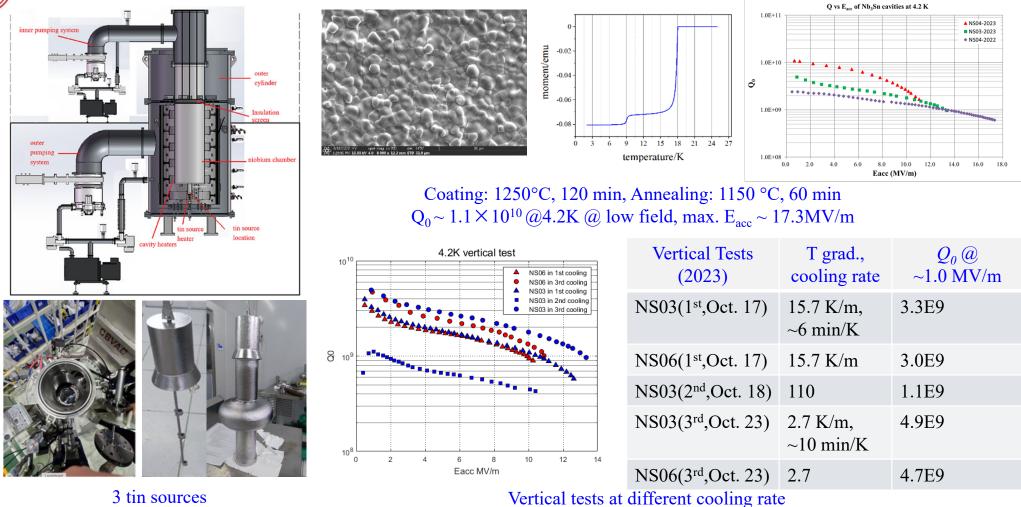

- Maximum gradients achieved up to ~ 20 MV/m.
- Several projects are underway to build cryomodules with coated cavities aiming for 4 K operation with conduction cooling.


U. Pudasaini et al. "Managing Sn-Supply to Tune Surface Characteristics of Vapor-Diffusion Coating of Nb₃Sn", presented at the SRF'21, East Lansing, MI, USA, Jun.-Jul. 2021, doi:10.18429/JACoW-SRF2021-TUPTEV013. S. Posen et al. "Advances in Nb₃Sn superconducting radiofrequency cavities towards first practical accelerator applications" Superconductor Science and Technology. 2021 Jan 11;34(2):025007. D. Hall, "New Insights into the Limitations on the Efficiency and Achievable Gradients in Nb₃Sn SRF Cavities", PhD thesis, Cornell University (2017). G. Jiang et al.. Understanding and optimization of the coating process of the radio-frequency Nb3Sn thin film superconducting cavities using tin vapor diffusion method. Applied Surface Science. 2024 Jan 15:643:158708.

Vapor-diffused Nb₃Sn grown on Nb: current issues

- Why is the attainable gradient limited?
 - Several approaches are being explored to push the gradient.
 - Roughness/Topography Management: Parameter optimization post-coating treatment and deposition of Sn before thermal diffusion.....
 - Film thickness reduction: correlates with surface roughness reduction and improved gradient limit
 - What are the other limiting factors?
- What causes the frequent Q-slope?
 - Studies are focused on correlating material properties and RF performance
 - Grain boundary structure and compositions
 - Limitations due to local defects
 - Facility and procedure dependent: performance sensitivity to Sn residue condensation, Ti evaporation from NbTi flanges....?
- Feasibility for practical applications how to preserve thin-film performance?
 - The coating process is adopted for larger/longer cavities with multiple Sn sources and coating parameter modifications.
 - How to deposit a high-quality coating on any arbitrary shape/sized cavities?
 - NbTi flanges are more practical avoid Ti contaminations
 - Hardware to contain Ti and/or altering coating parameters?

TEM analysis of grain boundaries with and without Q-slope



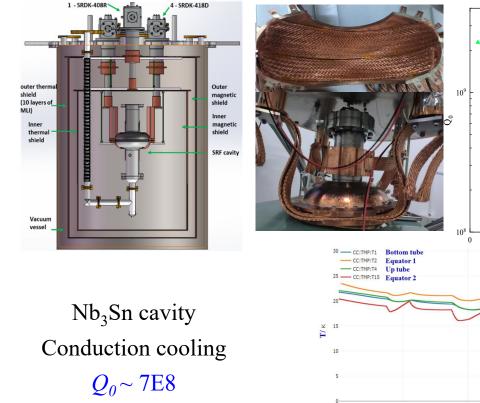
• Reproducibility is challenging!??

3bbupdated 231206

Nb₃Sn Cavities Coated by Tin Vapor Diffusion (Jiankui Hao, PKU)

TESLA Technology Collaboration Meeting, Fermilab, December 5-8, 2023

Conduction cooling of Nb₃Sn cavity


4.2K LHe

16:30

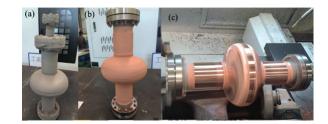
Conduction cooling - Instantaneou Conduction cooling - CW mode

5

16:40

 $Q_0 \sim 7E8$ (a) $E_{acc} = 1.75 \text{ MV/m}$ $P_c = 0.57 \text{ W}$

Cryocooler on and off, 17-18 K, $\Delta T < 2$ K T<16 K, cryocooler on, cooling down to 4 K


16:20

16:10

16:00

Next step

- Choose the best Nb₃Sn cavity NS04
- Cold spray with copper
- Slower cooling controlled with heater

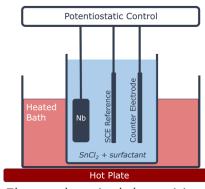
(a) sandblasted (b) cold sprayed(c) mechanical polished

Question/Discussion

What's the best cooling rate for vertical test and conduction cooling?

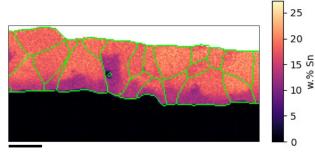
TESLA Technology Collaboration Meeting, Fermilab, December 5-8, 2023

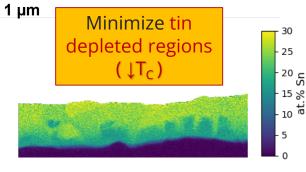
Nb₃Sn on Nb: Challenges


Goal for conduction-cooled SRF cavity technology: Reach higher Q₀ at 4.2K

Main challenge: achieve a smooth Nb₃Sn film with uniform thickness and stoichiometry


→ Improving vapor diffusion:

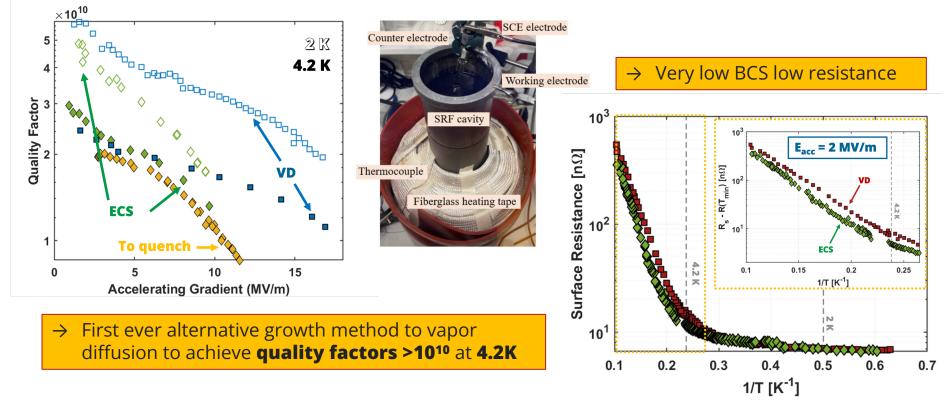

sample studies have shown that pre-nucleation chemical treatments affect tin coverage on Nb substrate


→ <u>Alternative growth method</u>: electrochemical synthesis

Anneal > 900°C to thermally convert to stoichiometric, smooth Nb₃Sn

Z. Sun et al 2023 Supercond. Sci. Technol. **36** 115003 **DOI** 10.1088/1361-6668/acf5ab

Electrochemical deposition


Nb₃Sn Thin Film Performance on Nb | Liana Shpani (<u>ls936@cornell.edu</u>)

Proof of Principle: Electrochemical Synthesis

This alternative growth method provides uniform tin nucleation and sufficient Sn supply in critical times

 \Rightarrow smoother Nb₃Sn films with little variation in Sn concentration with depth.

Nb₃Sn Thin Film Performance on Nb | Liana Shpani (<u>ls936@cornell.edu</u>)