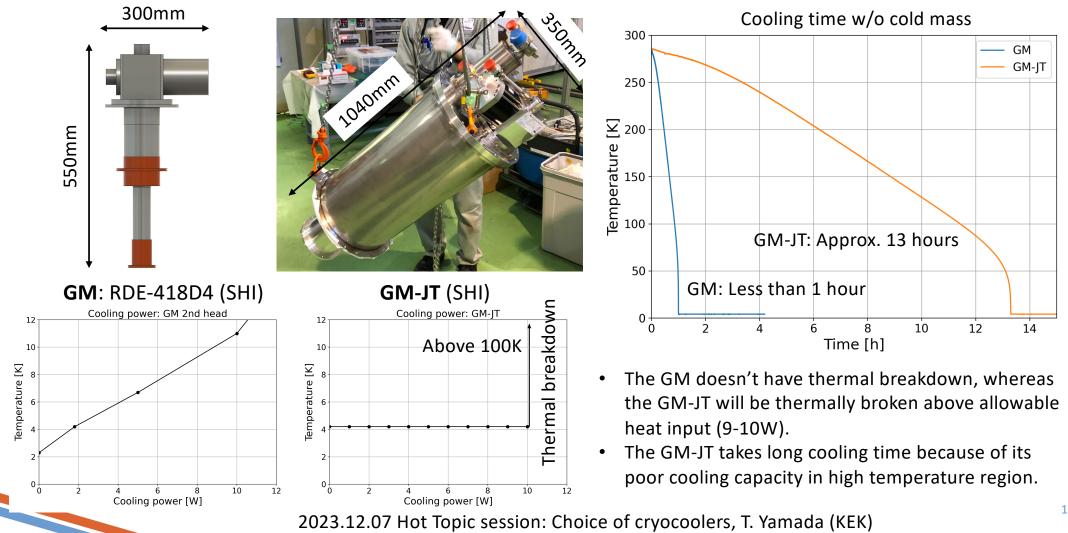
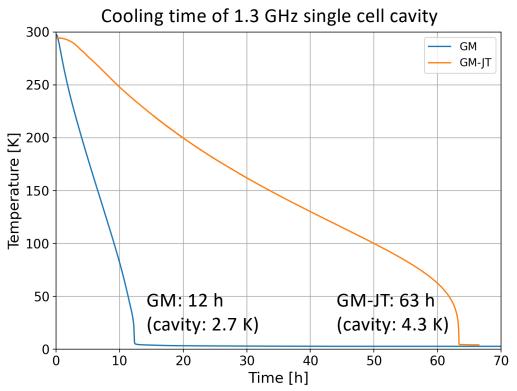
# Hot Topic Session: Speaker's List

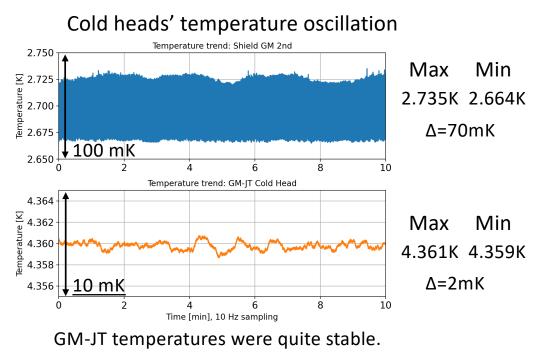



|        | Cagetory                         | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Institute    | Speaker confirmed |
|--------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| • Ini  | troduction                       | Gianluigi <u>Ciovani</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JLab         | yes               |
| 1. Ch  | oice of cryocoolers              | 1a) Tomohiro Yamada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KEK          | yes               |
|        |                                  | 1b) Ram Dhuley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FNAL         | yes               |
|        |                                  | 1c)Roman Kostin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Euclid Tech. | yes               |
|        |                                  | 1d) Zigin Yang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IMP          | J. Hao            |
| 2. Th  | ermal Link design                | 2a) Neil Stilin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cornell U.   | yes               |
|        |                                  | 2b) Tomohiro Yamada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KEK          | yes               |
|        |                                  | 2c) Ram Dhuley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FNAL         | yes               |
|        |                                  | 2d) Roman Kostin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Euclid       | yes               |
|        |                                  | 2e) Thomas Proslier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CEA-Saclay   | yes               |
| 3a. Nb | 3Sn on Cu thin-film performance  | 3aa) Cristian Pira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INFN         | yes               |
|        |                                  | 3ab) Shawn McNeal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ultramet     | yes               |
| 3b. Nb | o3Sn on Nb thin-film performance | Gianluigi Ciovani       JLa         1a) Tomohiro Yamada       KEI         1b) Ram Dhuley       FNA         1c)Roman Kostin       Euclid         1d) Zigin Yang       IMF         2a) Neil Stilin       Corne         2b) Tomohiro Yamada       KEI         2c) Ram Dhuley       FNA         2d) Roman Kostin       Euclid         2e) Thomas Proslier       CEA-Sa         mance       3aa) Cristian Pira       INF         3ab) Shawn McNeal       Ultrar         3bb) Jiankui Hao       PKI         3bb) Liana Shpani       Corne | JLab         | yes               |
|        |                                  | 3bb) Jiankui Hao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PKU          | yes               |
|        |                                  | 3bc) Liana Shpani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cornell      | N. Stilin         |
| 4. Tu  | nability / robustness of Nb3Sn   | 4a) Grigory Eremeev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FNAL         | yes               |

# 1a


### GM and GM-JT cryocoolers (by Tomohiro Yamada, KEK)






#### Innovation Center for Applied Superconducting Accelerators 応用超伝導加速器イノベーションセンター

# Cavity cooling (1.3GHz)



- GM-JT takes almost 5 times long time to cool down the cavity.
- Minimum temperatures for cases of GM and GM-JT were
   2.7 K and 4.3 K, respectively.



- We saw several hundreds Hz of frequency fluctuation in the GM case. <- Due to vibration or temperature?
- Considering thermal resistance in the thermal link and RF heating at the cavity, the cold head temperature needs to be as low as possible to keep the cavity temperature near 4.2K.

2023.12.07 Hot Topic session: Choice of cryocoolers, T. Yamada (KEK)

# 1b

### Fermilab **ENERGY** Office of Science



# The use of pulse tube cryocoolers for conduction cooling of SRF cavities

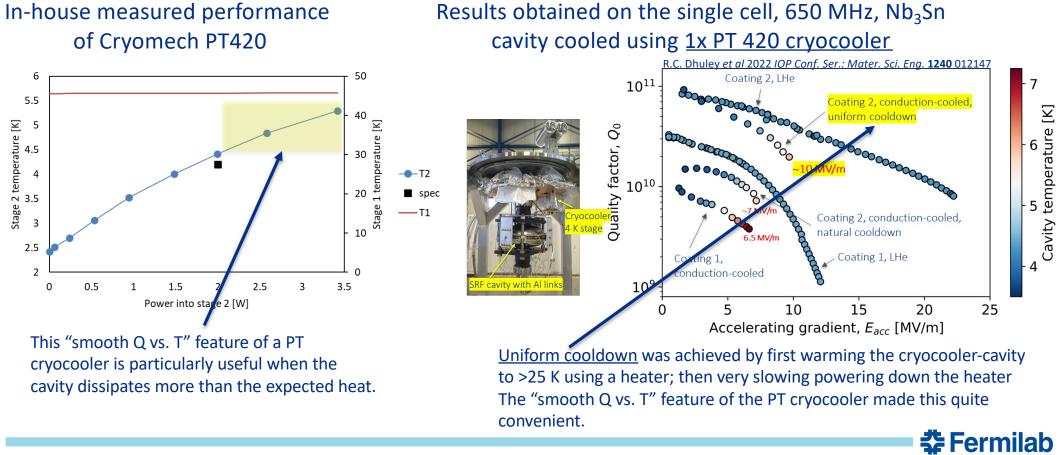
Ram C. Dhuley on behalf of Fermilab's conduction-cooled SRF project team 2023 TTC Meeting at Fermilab 07 December 2023

## Fermilab's conduction-cooled SRF demonstration used a <u>Cryomech PT420 pulse tube cryocooler</u>

### Approach for selecting the cryocooler

Estimation of 4 K cooling power requirement

| Single cell, beta ~1, Nb3Sn 650 MHz cavity, ~4 K operation |          |      |                        |  |
|------------------------------------------------------------|----------|------|------------------------|--|
| Parameter                                                  | Value    | Unit | Expression             |  |
| Rs                                                         | 1.00E-08 | ohm  |                        |  |
| G                                                          | 265      | ohm  |                        |  |
| Q0                                                         | 2.65E+10 |      | G/Rs                   |  |
| Eacc                                                       | 1.00E+07 | V/m  |                        |  |
| R/Q                                                        | 150      | ohm  |                        |  |
| Lacc                                                       | 0.23     | m    |                        |  |
| P-diss                                                     | 1.33     | W    | (Eacc*Lacc)^2/(Q0*R/Q) |  |


- We needed at least 1.33 W @  $\sim$ 4 K
- Further buffer to account for:
  - Cavity showing higher Rs
  - Static heat leak
  - Dynamic heat leak from RF cables
- <u>Approach</u>: get a cryocooler with highest available unit 4 K cooling capacity.

| Market survey in 2016-2017                       |                                                                    |                                                            |                                |                                                          |                        |  |
|--------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|----------------------------------------------------------|------------------------|--|
| 1.5W @ 4.2K<br>RDK-415D2 4H<br>Cryocooler Set    |                                                                    | 1.0W @ 4.2K<br>RP-082B2 4K Pulse Tube<br>Cryocooler Series | 5 W @<br>CG3105                |                                                          | 2 W @ 4.2 K            |  |
| Sumiton                                          | no GM                                                              | Sumitomo PT                                                | Sun                            | nitomo GM-JT                                             | РТ 420                 |  |
| Cryomech PT                                      |                                                                    |                                                            |                                |                                                          |                        |  |
| GM-JT coolers: Pulse tube coolers:               |                                                                    |                                                            |                                |                                                          |                        |  |
| Limited field data                               |                                                                    |                                                            | •                              | <ul> <li>Very good response to non-isothermal</li> </ul> |                        |  |
| • More suita                                     | <ul> <li>More suitable for isothermal cooling at the JT</li> </ul> |                                                            |                                | load all the way to room temperature                     |                        |  |
| stage (liquefaction vs. conduction load) • Excel |                                                                    |                                                            | <mark>Excellent tempera</mark> | iture control can be                                     |                        |  |
| "JT cooling                                      | loop" sudden                                                       | ly stops working abov                                      | ve a                           | established using                                        | <mark>a heater</mark>  |  |
| certain tem                                      | iperature – ( <mark>ir</mark>                                      | ntermediate warmup                                         | to •                           | 55 W @ 45 K avail                                        | lable in the same unit |  |

- >18 K, uniform slow cooldown for Nb<sub>3</sub>Sn cavities?)
  All GM capacity is used for precooling the JT stage
- 55 W @ 45 K available in the same unit for thermal radiation and conduction leak interception



# Fermilab's conduction-cooled SRF demonstration used a <u>Cryomech pulse tube cryocooler</u>



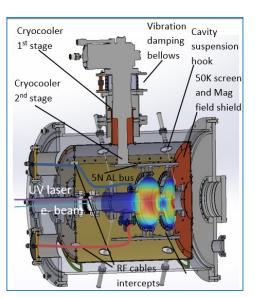
3

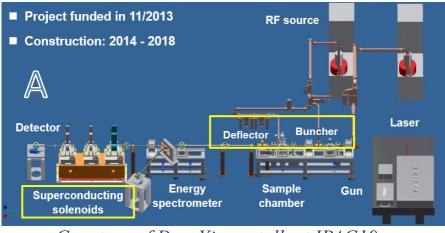
1 c



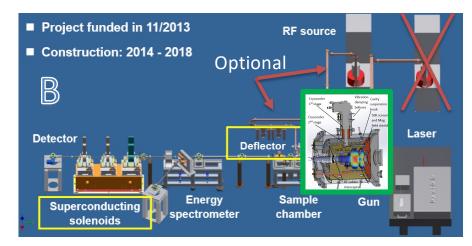


# Closed cycle cryocoolers for conduction cooling of SRF cavities


Roman Kostin, Euclid BeamLabs, Bolingbrook, IL, USA


## Why do we need cryocooler and what we are doing?

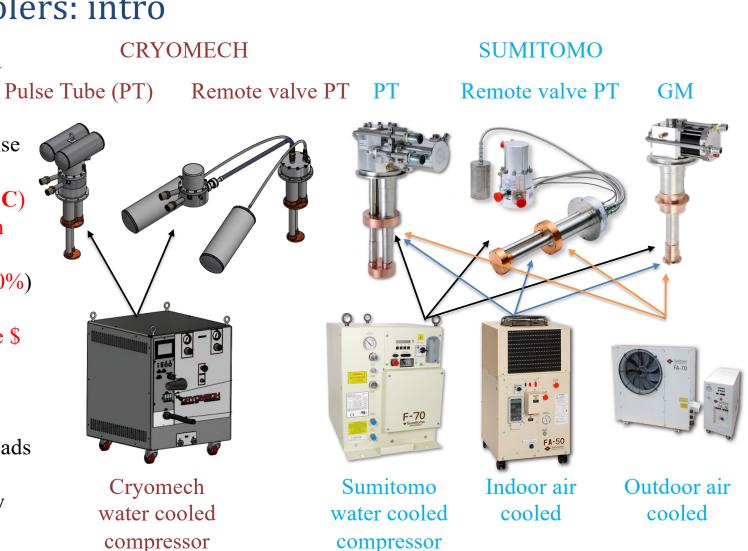
# Conduction cooled Nb<sub>3</sub>Sn SRF photo-gun for UED/UEM:


- 4K operation temperature (Nb<sub>3</sub>Sn)
- 2W cryocooler is required (\$50K, relatively cheap)
- CW operation
- Smaller footprint, 10W RF power only
- Higher stability

| Parameter                        | Value                  |
|----------------------------------|------------------------|
| Frequency                        | 1.3 GHz                |
| Length                           | 1.45cell<br>(166.54mm) |
| Q0 at 4° K (Rs = 20 n $\Omega$ ) | $1.16 \times 10^{10}$  |
| R/Q                              | 176.9 Ω                |
| Geometry factor                  | 232 Ω                  |
| Wall Power dissipation           | 0.9 W                  |
| E on axis                        | 20 MV/m                |
| E max                            | 23.5 MV/m              |
| B max                            | 43.3 mT                |
| E acc                            | 10 MV/m                |






#### Courtesy of Dao Xiang, talk at IPAC19

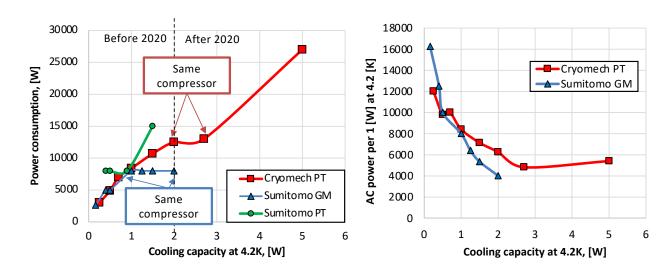




# Closed-cycle cryocoolers: intro

- Cryocooler consist of a cold head and a compressor
   Pu
- Most widely used cold heads: Gifford-McMahon (GM) and Pulse Tube (PT)
- Pulse Tubes Cooling Capacity (CC) goes to 0 in horizontal orientation
- Pulse Tubes have a remote valve option (less vibrations, but CC-10%)
- Compressors types: air cooled, water cooled - chiller req-d (more \$ and Power Consumption X1.5)
- Sumitomo 4.2 [K] options: indoor/outdoor air/water cooled compressors, PT and GM cold heads
- Cryomech 4.2 [K] options: water cooled compressors only, PT only

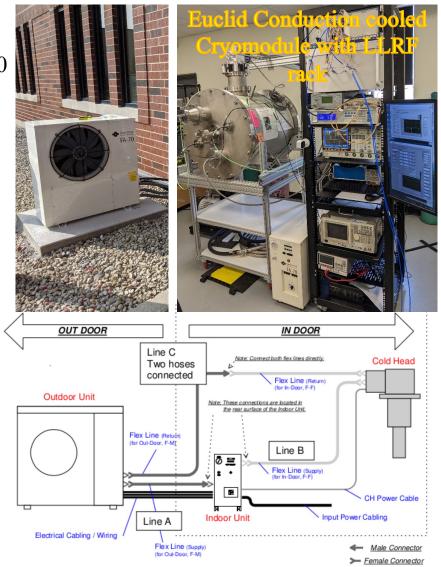





# Closed-cycle cryocoolers: specs

- Things to consider
  - PRICE
  - Efficiency
  - Power and cooling supply
  - Maintenance: PT 20k hrs, GM 10k hrs
  - Cooler scheme: pulse-tube of Gifford Mc Mahon
  - Cooling capacity
  - Operation conditions (vertical or not)
  - Vibrations
  - Sizes
- Interesting correlation:
  - Power consumption is driven by compressor
  - Cooling capacity is driven by cold head
- Euclid choice was **Sumitomo air cooled** because of price and no cooling water supply.

### Table.1 Closed cycle cryocooler cost based on quotes collected in 2020


|            | Cryomech Water<br>Cooled PT | Sumitomo Water<br>Cooled GM | Sumitomo Air Cooled<br>GM |
|------------|-----------------------------|-----------------------------|---------------------------|
| Cold head  | \$30k (PT420RM)             | \$36k (RDE-418)             | \$36k (RDE-418)           |
| Compressor | \$25k (CP1114)              | \$7k (F-70L)                | \$13k (FA-70L)            |
| Misc.      | \$8k                        | \$2k                        | \$6k                      |
| Chiller    | \$20k                       | \$20k                       | NA                        |
| Total      | \$83                        | \$65k                       | \$55k                     |





# Summary

- Cryomech and Sumitomo had only 2 [W] systems back in 2020
- Cryomech offered only PT cold heads and water-cooled compressors:
  - Water cooled compressors require chiller:
    - Increases power consumption x1.5, 20 [kW] total
    - Increases price by \$20k \$83k total.
  - PT
    - Can operate vertically only
    - Maintenance in 20k [hrs]
    - Lower vibrations for **remote valve option only**
- Sumitomo offered GM/PT with air/water cooled compressors
- Euclid choice was Sumitomo air cooled GM system:
  - Power: 8 [kW]: 40 [Amp], 200 [V] 3 phase.
  - Price: **\$55k**
  - Can operate upside down if needed
  - Maintenance in 10k [hrs]
  - Vibration is not an issue: Euclid cavity was locked despite 5 [Hz] bandwidth.

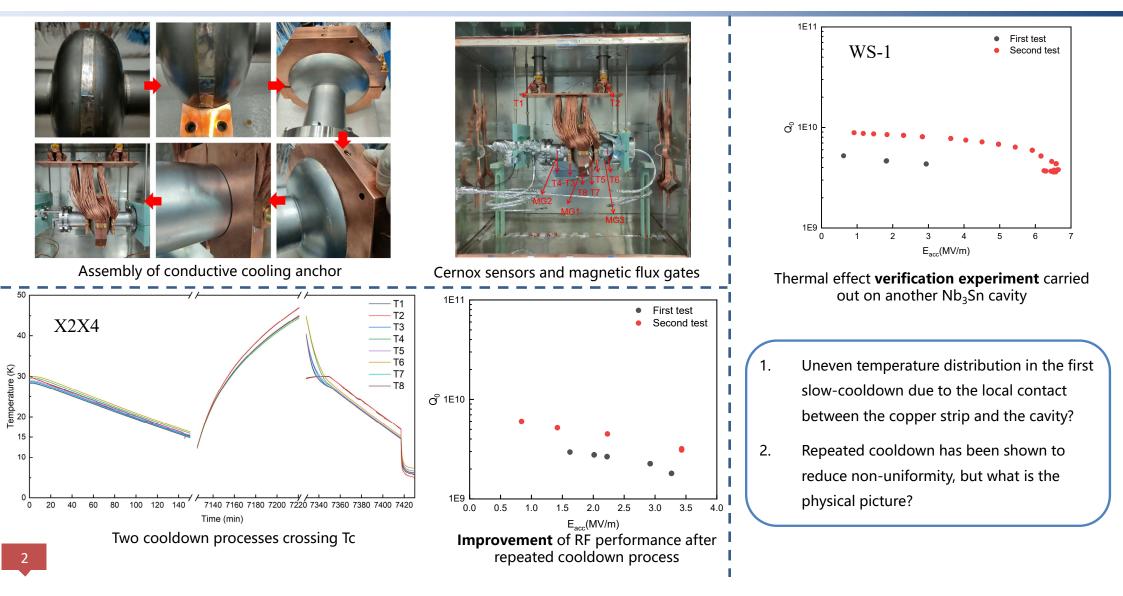




# 1d -updated, 231206





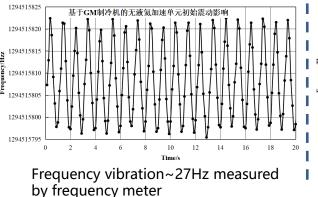

# Hot-topic Session at TTC-Fermilab Meeting Topic 1、Topic 2

## Ziqin Yang (yzq@impcas.ac.cn), Yuan He Jiankui Hao (Peking University, On behalf of Ziqin Yang)

Institute of Modern Physics, Chinese Academy of Sciences

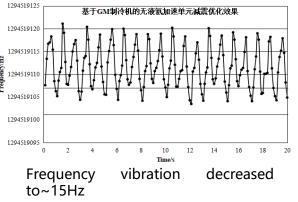


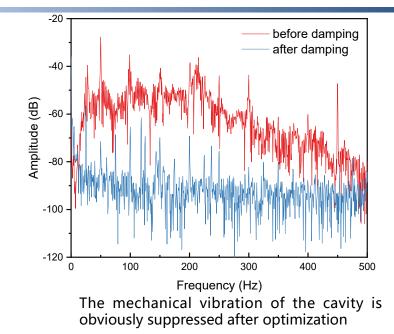
### Thermal cycle effect of conduction-cooled Nb<sub>3</sub>Sn SRF cavity




## Frequency vibration caused by GM cryocoolers and suppression

2.





Initial design: Vibrations transmitted to the top of module





Optimized design: Vibrations transmitted to the ground





- GM cryocoolers can cause frequency vibration of conduction cooled SRF cavity, and their impact on particle acceleration is being further evaluated.
- Reasonable damping structure design can significantly reduce the impact of GM cryocoolers.