## Hot Topic Session: Speaker's List

| Cagetory                              | Name                     | Institute    | Speaker<br>confirmed |
|---------------------------------------|--------------------------|--------------|----------------------|
| Introduction                          | Gianluigi <u>Ciovani</u> | JLab         | yes                  |
| 1. Choice of cryocoolers              | 1a) Tomohiro Yamada      | KEK          | yes                  |
|                                       | 1b) Ram Dhuley           | FNAL         | yes                  |
|                                       | 1c)Roman Kostin          | Euclid Tech. | yes                  |
|                                       | 1d) Ziqin Yang           | IMP          | J. Hao               |
| 2. Thermal Link design                | 2a) Neil Stilin          | Cornell U.   | yes                  |
|                                       | 2b) Tomohiro Yamada      | KEK          | yes                  |
|                                       | 2c) Ram Dhuley           | FNAL         | yes                  |
|                                       | 2d) Roman Kostin         | Euclid       | yes                  |
|                                       | 2e) Thomas Proslier      | CEA-Saclay   | yes                  |
| 3a. Nb3Sn on Cu thin-film performance | 3aa) Cristian Pira       | INFN         | yes                  |
|                                       | 3ab) Shawn McNeal        | Ultramet     | yes                  |
| 3b. Nb3Sn on Nb thin-film performance | 3ba) Uttar Pudasaini     | JLab         | yes                  |
|                                       | 3bb) Jiankui Hao         | PKU          | yes                  |
|                                       | 3bc) Liana Shpani        | Cornell      | N. Stilin            |
| 4. Tunability / robustness of Nb3Sn   | 4a) Grigory Eremeev      | FNAL         | yes                  |





# Nb<sub>3</sub>Sn on Cu:

## **Motivations for Cu substrate**

- Cheaper than Nb
- Higher thermal conductivity
- Higher mechanical stability
- PVD technology (Nb on Cu) already used for: LEP, LHC, HIE-ISOLDE @ CERN ALPI @ INFN LNL



## Different technologies under study:

► PVD





## Nb<sub>3</sub>Sn on Cu by PVD

- R&D is Focused on Coating Parameter Optimization to get the right phase at lowest Working T possible
- ► No RF test yet on cavities available
- ► Only a couple of preliminary tests on QPR @CERN



Single Target configuration easier to scale into cavities

@ CERN and JLab HiPIMS to densify coating

@ STFC DCMS-HiPIMS comparision

@ INFN thick Nb buffer layer

(barrier and accommodation effect) improve dramatically Tc



cristian.pira@Inl.infn.it

## **Multiple Challenges**

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Substrate preparation
- Low melting point substrate
- ► Interface diffusion
- Target Production

Challenges for conduction-cooled SRF cavity technology

Nb<sub>3</sub>Sn on Cu





## **CVD Nb<sub>3</sub>Sn Thin Film Performance**



Shawn R. McNeal, Victor M. Arrieta\* Ultramet | Pacoima, California TESLA Technology Collaboration Meeting (TTC 2023) Fermilab | Batavia, Illinois | December 5–8, 2023



CVD Nb<sub>3</sub>Sn coating on CVD niobium interlayer on welded (Niowave) copper cavity substrate



CVD Nb<sub>3</sub>Sn coating on copper substrate: excellent adhesion



CVD Nb<sub>3</sub>Sn on welded copper cavity



Q vs. E for first-of-kind CVD Nb<sub>3</sub>Sn welded copper cavity SN38-39 and seamless copper cavity SN-4 with CVD Nb<sub>3</sub>Sn coating on CVD niobium interlayer at 4.2 K



SN-4A, seamless copper cavity substrate (BTM, Inc.)

#### **CHALLENGES**



SN38-39: ring-crack in Nb<sub>3</sub>Sn coating on one tube (*top*); equator pre-coating (*bottom left*) and as-coated and as-tested (*bottom right*)



*Left*, SN-2, as-received surface roughness and anomalies; *right*, SN-4, post-etch copper and as-coated & as-tested.

#### What Is Needed for CVD-based Nb<sub>3</sub>Sn/Cu Cavities

#### Non-Trivial Factors Impeding CVD-based Cavity Technology Growth

 Cavity Design Define cavity design early to enable focused, efficient, relevant process R&D for all involved

#### ✤ CVD Nb<sub>3</sub>Sn-on-Copper Process Development & Scaling

- CVD reactor customization and optimization
- > CTE mismatch, thermostructural analysis, and interlayers
- > ID surface conditioning methods for bare copper and Nb<sub>3</sub>Sn coatings
- > OD strengthening methods: AM, electrochemical, thermal spray?
- Precursor Process Development & Scaling
  - Fundamental R&D: Precursor process development leading to reliable supplier for high-quality precursors
- Copper Cavities Expanded domestic infrastructure & capabilities
  - Fundamental R&D Copper cavity substrate process R&D for high-quality cavity substrates necessary for efficient, relevant R&D leading to reliable supplier(s) (with inventory!)
- Testing Ready access to material and <u>cavity</u> testing
  > Ideas? Quick-check/in-process cavity test methods?
- ✤ CVD Nb<sub>3</sub>Sn-on-Copper Cavity Production
  - Build-test-repeat to TRL-9





## Performance of vapor-diffused Nb<sub>3</sub>Sn grown on Nb

#### Uttar Pudasaini

Sunday, December 3, 2023







### Performance of vapor-diffused Nb<sub>3</sub>Sn grown on Nb



operated with cryocoolers.

TTC-2022



- Maximum gradients achieved up to ~ 20 MV/m.
- Several projects are underway to build cryomodules with coated cavities aiming for 4 K operation with conduction cooling.

U. Pudasaini et al. "Managing Sn-Supply to Tune Surface Characteristics of Vapor-Diffusion Coating of Nb<sub>3</sub>Sn", presented at the SRF'21, East Lansing, MI, USA, Jun.-Jul. 2021, doi:10.18429/JACoW-SRF2021-TUPTEV013. S. Posen et al. "Advances in Nb<sub>3</sub>Sn superconducting radiofrequency cavities towards first practical accelerator applications" Superconductor Science and Technology. 2021 Jan 11;34(2):025007. D. Hall, "New Insights into the Limitations on the Efficiency and Achievable Gradients in Nb<sub>3</sub>Sn SRF Cavities", PhD thesis, Cornell University (2017). G. Jiang et al.. Understanding and optimization of the coating process of the radio-frequency Nb3Sn thin film superconducting cavities using tin vapor diffusion method. Applied Surface Science. 2024 Jan 15:643:158708.



### Vapor-diffused Nb<sub>3</sub>Sn grown on Nb: current issues

- Why is the attainable gradient limited?
  - Several approaches are being explored to push the gradient.
    - Roughness/Topography Management: Parameter optimization post-coating treatment and deposition of Sn before thermal diffusion.....
    - Film thickness reduction: correlates with surface roughness reduction and improved gradient limit
    - What are the other limiting factors?
- What causes the frequent Q-slope?
  - Studies are focused on correlating material properties and RF performance
    - Grain boundary structure and compositions
    - Limitations due to local defects
    - Facility and procedure dependent: performance sensitivity to Sn residue condensation, Ti evaporation from NbTi flanges....?
- Feasibility for practical applications how to preserve thin-film performance?
  - The coating process is adopted for larger/longer cavities with multiple Sn sources and coating parameter modifications.
  - How to deposit a high-quality coating on any arbitrary shape/sized cavities?
  - NbTi flanges are more practical avoid Ti contaminations
    - Hardware to contain Ti and/or altering coating parameters?





TEM analysis of grain boundaries with and without Q-slope



• Reproducibility is challenging!??

## 3bbupdated 231206



#### Nb<sub>3</sub>Sn Cavities Coated by Tin Vapor Diffusion (Jiankui Hao, PKU)



TESLA Technology Collaboration Meeting, Fermilab, December 5-8, 2023



#### Conduction cooling of Nb<sub>3</sub>Sn cavity

4.2K LHe

16:30

Conduction cooling - Instantaneou Conduction cooling - CW mode

5

16:40



 $Q_0 \sim 7E8$ (a)  $E_{acc} = 1.75 \text{ MV/m}$  $P_c = 0.57 \text{ W}$ 

Cryocooler on and off, 17-18 K,  $\Delta T < 2$  K T<16 K, cryocooler on, cooling down to 4 K

16:20

16:10

16:00

#### Next step

- Choose the best Nb<sub>3</sub>Sn cavity NS04
- Cold spray with copper
- Slower cooling controlled with heater



(a) sandblasted (b) cold sprayed(c) mechanical polished

#### **Question/Discussion**

What's the best cooling rate for vertical test and conduction cooling?

TESLA Technology Collaboration Meeting, Fermilab, December 5-8, 2023



#### Nb<sub>3</sub>Sn on Nb: Challenges



Goal for conduction-cooled SRF cavity technology: Reach higher Q<sub>0</sub> at 4.2K

Main challenge: achieve a smooth Nb<sub>3</sub>Sn film with uniform thickness and stoichiometry

→ Improving vapor diffusion:

sample studies have shown that pre-nucleation chemical treatments affect tin coverage on Nb substrate

→ <u>Alternative growth method</u>: electrochemical synthesis



Anneal > 900°C to thermally convert to stoichiometric, smooth Nb<sub>3</sub>Sn







Z. Sun et al 2023 Supercond. Sci. Technol. **36** 115003 **DOI** 10.1088/1361-6668/acf5ab

Electrochemical deposition

Nb<sub>3</sub>Sn Thin Film Performance on Nb | Liana Shpani (<u>ls936@cornell.edu</u>)

#### Proof of Principle: Electrochemical Synthesis



This alternative growth method provides uniform tin nucleation and sufficient Sn supply in critical times

 $\Rightarrow$  smoother Nb<sub>3</sub>Sn films with little variation in Sn concentration with depth.



Nb<sub>3</sub>Sn Thin Film Performance on Nb | Liana Shpani (<u>ls936@cornell.edu</u>)