# **Performance of the First Mid-T 1.3 GHz Module**

Jiyuan Zhai (IHEP, Beijing, China) Presented by Han Li (IASF, Shenzhen, China)

TTC Meeting, FNAL, Dec. 5, 2023

#### Outline

- 1. Introduction
- 2. Cryomodule assembly
- 3. Horizontal test result
- 4. Summary

#### Mid-T Bake Cavity and Cryomodule Development

- Fermilab: in-situ mid-T bake of assembled cavity (S. Posen, et al, SRF19 MOP043, Jul. 2019; PHYSICAL REVIEW APPLIED 13, 014024, 2020). Discovery of high Q by 250~400 C mid-T bake.
- **KEK:** regular furnace mid-T bake of unassembled cavity (*K. Umemori, TTC meeting at CERN, Feb. 2020; H. Ito, et al, Prog. Theor. Exp. Phys. 2021, 071G01*). Simplified the implementation of mid-T bake.
- IHEP:
  - Further simplified furnace mid-T bake procedure (only one bulk EP, no light EP).
  - Successfully applied mid-T bake to 1.3 GHz 9-cell cavities in Oct. 2020 (F. He, et al, Superconductor Science and Technology, 34, 2021, 095005). 14 mid-T 9- cell cavities tested in 2020-2022.
  - Cryomodule with eight mid-T 9-cell cavities achieved world leading high Q and high gradient in June 2023 (<u>https://arxiv.org/abs/2312.01175</u>) for Dalian Advanced Light Source (DALS) R&D, based on the important experience gained in Euro-XFEL and LCLS-II (&HE) cryomodules.
- Advantages: mid-T 1 EP vs N-doping 3 EPs, no NbN precipitates, no careful EP after doping, stable and reliable performance ... (*H. Padamsee. Superconducting Radiofrequency Technology for Accelerators: State of the Art and Emerging Trends. Wiley-VCH, Feb. 2023*)
- Application: PIP-II 650 MHz β=0.61 5-cell cavities will use mid-T bake. SHINE, S<sup>3</sup>FEL, DALS, CEPC, CW upgrade of Euro-XFEL and other projects are considering to use mid-T bake for large number of cavities.

#### **Vertical Test Results of Mid-T Bake 9-cell Cavities at IHEP**



Average  $Q_0 4.5E10$  at 16~21 MV/m of 12 mid-T 9-cell cavities.  $Q_0$  corrected for stainless steel flange loss (0.8 n $\Omega$ ) in order to compare with module test results directly.

IHEP Mid-T 1.3 GHz 9-cell Cavities with Helium Vessel Vertical Test or Horizontal Test (HT) with Antenna



Due to tight schedule, no time to warm-up and cool down some of the dressed cavities to recover the degraded  $Q_0$ after quench, or with not-optimized fast cool down, or by thermal current. 4

#### **Module Assembly**

















- cavity string kept in vacuum during the cold mass assembly all through to the horizontal test.
- cavity string pumped by TMP whenever possible during the cold mass assembly outside the clean room.

#### **Module Instrumentation**



#### 143 temperature sensors, 12 flux gates, 6 radiation detectors...e.g. important to find:

- overheating of the HOM coupler caused by poor thermal conduction (limit to < 10 MV/m)
- overheating of input coupler caused by poor mechanical connection of the warm part and cold part of the inner conductor ...

|          |        | DECK   | Iman   | 100.4  | Imo    | 100    |                   | 100 111 | 100 111 |            |         | 2       |         |         |
|----------|--------|--------|--------|--------|--------|--------|-------------------|---------|---------|------------|---------|---------|---------|---------|
| Valvebox | Buffer | BICM   | HICM   | VD1    | VD2    | AD3    | auto cooldown1.3G | 166 MHz | 499 MHz | I. 3GHZ CM | Pump1   | Pump2   | Pump3   | Alarm   |
| Trend1   | Trend2 | Trend3 | Trend4 | Trend5 | Trend6 | Trend7 | auto cooldown     | Trend9  | Trend10 | Trend11    | Trend12 | Trend13 | Trend14 | Trend15 |

#### **Module Cooldown**



7

#### **Module Cooldown**



# **Cavity Processing**

- High Q TESLA cavities (MP band at 17-24 MV/m) sometimes need more multipacting processing than baseline (EP+120C) cavities, especially in the module.
- Two of the eight (25 %) cavities show repetitive quenching.
- Cavity processing takes two days (May 28-29, 2023).

**1#:** 5.28 10:16-10:40, 2 quenches at 20-21 MV/m.

**2#**: 5.28 9:29-13:26, 14 quenches at < 14 MV/m, 12 quenches at 17-19 MV/m. HOM2 heating and quench at > 20 MV/m with X-ray

**3#**: 5.28 9:17-10:40, no MP quench.

4#: 5.28 13:02-13:30, 1 quench at 19 and 23 MV/m.

**5#**: 5.29 outgassing by pulsed processing, reach 26 MV/m after 80 min. Quench number NA.

**6#**: 5.28 12:42-12:49, no MP quench.

**7#**: 5.28 10:30-13:05, no MP quench.

8#: 5.28 10:37-15:50, 57 quenches at 17-24 MV/m.



# **Cryomodule Performance**

| Parameters                                    | IHEP<br>Mid-T CM1<br>test results | DALS, SHINE,<br>S <sup>3</sup> FEL spec. | CEPC Spec.           |  |
|-----------------------------------------------|-----------------------------------|------------------------------------------|----------------------|--|
| CM usable RF voltage (MV)                     | > 191.2                           | 128                                      | 180                  |  |
| Average usable <i>E</i> <sub>acc</sub> (MV/m) | > 23.1                            | 16                                       | 21.8                 |  |
| 2 K heat load @ 128 MV (W)                    | 83.5                              | 93                                       | /                    |  |
| Average Q <sub>0</sub> @ 16 MV/m              | 3.8×10 <sup>10</sup>              | 2.7×10 <sup>10</sup>                     | /                    |  |
| 2 K heat load @ 173 MV (W)                    | 133                               | /                                        | 140                  |  |
| Average Q <sub>0</sub> @ 21 MV/m              | 3.6×10 <sup>10</sup>              | /                                        | 3.0×10 <sup>10</sup> |  |





#### **Radiation Dose and Dark Current**

Each of the eight superconducting cavities powered to 16 MV/m, and the radiation dose parameters of each cavity were monitored separately.

CAV1: onset@10 MV/m, ~ 5 uSv/h CAV6: onset@10.8 MV/m, ~ 13 uSv/h Other cavities: NO FE

8 cavities radiation dose < 0.08 mSv/h (spec 0.5 mSv/h) The dark current is smaller than the spec (1 nA)



**Radiation Detectors** 



Faraday Cup



# **Stable Operation**

Continuous stable operation for 12 hours at 133 MV (each cavity working at 16.0 MV/m) Coupler cold window maximum temperature < 100 K; Radiation dose < 0.08 mSv/h



| C CS-Studio                                   |                                                                                                                                                                          |                                                                                                              |                                                                       | – 0 ×             |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|
| File Edit Search Run CS-Studio Window Help    |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
|                                               |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
| Xilinx_IIrf      Booster LLRF     Xilinx_IIrf | * <not *<not="" saved="" saved<="" td="" 🔯=""><td>🔯 *<not saved<="" td=""><td>🔯 *<not <not="" saved="" t<="" td="" 🔯="" 🖾=""><td>~2 = e</td></not></td></not></td></not> | 🔯 * <not saved<="" td=""><td>🔯 *<not <not="" saved="" t<="" td="" 🔯="" 🖾=""><td>~2 = e</td></not></td></not> | 🔯 * <not <not="" saved="" t<="" td="" 🔯="" 🖾=""><td>~2 = e</td></not> | ~2 = e            |
|                                               |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
| 8- 8- 8- 8- 8- 8- 8-                          |                                                                                                                                                                          | Fa                                                                                                           | 226                                                                   |                   |
|                                               |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
|                                               |                                                                                                                                                                          | 16 10//00                                                                                                    |                                                                       |                   |
|                                               |                                                                                                                                                                          | 10 10/07/11                                                                                                  |                                                                       |                   |
|                                               |                                                                                                                                                                          | 16 MV/m                                                                                                      |                                                                       |                   |
|                                               | <                                                                                                                                                                        | 16 MV/m                                                                                                      |                                                                       |                   |
| 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2       |                                                                                                                                                                          | 16 MV/m                                                                                                      |                                                                       |                   |
| <b>6 8 8 8 8 8 8 8 8 8 8</b>                  |                                                                                                                                                                          | 16 MV/m                                                                                                      |                                                                       |                   |
|                                               |                                                                                                                                                                          | 16 MV/m                                                                                                      |                                                                       |                   |
|                                               |                                                                                                                                                                          | 16 MV/m                                                                                                      |                                                                       |                   |
|                                               |                                                                                                                                                                          | 16 M//m                                                                                                      |                                                                       |                   |
|                                               |                                                                                                                                                                          |                                                                                                              | n contactuation contactuation                                         |                   |
|                                               |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
| ······································        |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
| <b>7 7 7 8 8 8 8 8</b>                        |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
|                                               |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
| ــــــــــــــــــــــــــــــــــــــ        |                                                                                                                                                                          |                                                                                                              |                                                                       |                   |
|                                               | 22:00 00:00 00:37<br>2023-07-03                                                                                                                                          | 02:00                                                                                                        | 04:00 06:00                                                           | 08:00             |
|                                               |                                                                                                                                                                          |                                                                                                              | 1                                                                     | - wang            |
| 💷 👝 🖉 🖓 🔑 🐽 📣 📝 📾 🖉                           | ai 🦀 न 📷 🦄 🕋                                                                                                                                                             |                                                                                                              | 97% 🖬 🛱                                                               | ∧ 📀 🖙 町 革 10:54 🔲 |



Coupler warm part temperature

#### **Cool Down Rate and Average Q**<sub>0</sub>

Single cavity  $Q_0$ :

$$Q_0 = rac{\left(E_{acc\_P_t} \cdot L_{ ext{eff}} 
ight)^2}{R/Q st Q_{ ext{dynamic}}} = rac{Q_t \cdot P_t}{Q_{ ext{dynamic}}}$$

Average  $Q_0$  of 8 cavities:

$$\overline{Q_0} = rac{\left(rac{1}{8}\Sigma E_{acc\_P_t}\cdot L_{ ext{eff}}
ight)^2}{R/Q*Q_{ ext{dynamic}}/8}, ext{ or } \overline{Q_0} = rac{\Sigma (E_{acc\_P_t}\cdot L_{ ext{eff}})^2}{R/Q*Q'_{ ext{dymamic}}}$$

| RF Voltage, cool down (date)  | Measurement<br>Date | Average E <sub>acc</sub><br>[MV/m] | Q <sub>dyn</sub><br>[W] | Average Q <sub>0</sub> |
|-------------------------------|---------------------|------------------------------------|-------------------------|------------------------|
| 133 MV, fast cool down (6.1)  | 6.12                | 15.9±0.9                           | 60.5±1.9                | (3.6±0.4)E10           |
| 133 MV, fast cool down (6.1)  | 6.12                | 15.9±0.9                           | 62.3±1.9                | (3.5±0.4)E10           |
| 133 MV, slow cool down (6.19) | 7.3                 | 16.1±0.9                           | 57.2±1.9                | (3.8±0.4)E10           |
| 133 MV, slow cool down (6.19) | 7.4                 | 16.1±0.9                           | 58.4±1.9                | (3.7±0.4)E10           |
| 174 MV, fast cool down (6.1)  | 6.12                | 20.9±1.2                           | 104.4±1.7               | (3.6±0.4)E10           |

Heat load measurement details in Feisi He's talk on Wed, WG4.

#### **Temperature Difference of Fast / Slow Cooldown**







 $\Delta$ T: top (T1, T2) to bottom (T3, T4) temperature difference of a cell

| CAV<br># | Cool<br>down<br>rate*<br>[g/s] | 1#cell<br>∆T<br>[K] | 9#cell<br>∆T<br>[K] | 45°<br>[mG] | Trans-<br>verse<br>[mG] | Axial<br>[mG] |
|----------|--------------------------------|---------------------|---------------------|-------------|-------------------------|---------------|
| 1        | > 39                           | 6.4                 | 3.6                 |             |                         |               |
| 5        | > 41                           | 5.23                | 3.94                |             |                         |               |
| 8        | > 39                           | 5.76                | 5.57                |             |                         |               |
| 1        | 8                              | 3.89                | 3.96                | -1.84       | -0.49                   |               |
| 5        | 12                             | 7.45                | 7.49                | - 3.91      |                         | 1.93          |
| 8        | 8~11                           | 12.16               | 4.64                |             | 0.36                    | 2.54          |

\* when cell bottom reaches critical temperature of 9.2 K

#### **Future Work**

- **1.** Optimize VT procedure of jacketed cavity to have similar  $Q_0$  with bare cavity (for mass production without VT of bare cavities).
- 2. Reduce module static heat load (25 W, details in Feisi He's talk on Wed, WG4).
- 3. Investigate the relation of  $Q_0$  with different cooldown speed, top to bottom cavity temperature difference at critical temperature, flux expulsion, remnant magnetic field and thermal current etc.
- 4. Investigate gradient drop of individual cavities and avoid systematic risk.
- 5. Investigate cavity processing and input coupler outgassing issues and reduce processing time.
- 6. Increase cavity gradient, reduce Q spread. Statistics with more mid-T cavities and cryomodules.

#### **Summary**

- IHEP successfully developed world's first medium temperature baking (mid-T) high Q<sub>0</sub> 1.3 GHz cryomodule. Main performance meets the requirement of DALS / S<sup>3</sup>FEL / SHINE, and is beyond LCLS-II-HE and CEPC spec.
- Module total CW RF voltage greater than 191 MV ( > 23 MV/m). Multipacting processing time quite different for the eight cavities.
- Unprecedented high average Q<sub>0</sub> of 3.8E10 at 16 MV/m and 3.6E10 at 21 MV/m of eight mid-T bake 9-cell cavities in the module. Preliminary results show the slow and fast cooldown have similar Q<sub>0</sub>.
- Will make more mid-T module prototypes for SHINE and S<sup>3</sup>FEL in next few years for more data and further investigation.

# Thank you!

# **Backup**

#### Mid-T Furnace Bake and Nitrogen Doping



### **Comparison of Cavity Performance in VT and CM**

| Cavity<br>Serial #                                             | CAV# in<br>DALS-<br>CM1 | in<br>S- Bare Cavity Vertical Test |                            |                            | Jacketed Cavity Vertical Test |                       |                            | Cryomodule Test            |                            |                       |                          | Note                       |                            |                                          |
|----------------------------------------------------------------|-------------------------|------------------------------------|----------------------------|----------------------------|-------------------------------|-----------------------|----------------------------|----------------------------|----------------------------|-----------------------|--------------------------|----------------------------|----------------------------|------------------------------------------|
| stainless steel<br>flange loss<br>corrected for Q <sub>0</sub> |                         | Max<br>Eacc<br>[MV/m]              | Q0 at<br>16 MV/m<br>[1E10] | Q0 at<br>21 MV/m<br>[1E10] | Q0 at<br>23 MV/m<br>[1E10]    | Max<br>Eacc<br>[MV/m] | Q0 at<br>16 MV/m<br>[1E10] | Q0 at<br>21 MV/m<br>[1E10] | Q0 at<br>23 MV/m<br>[1E10] | Max<br>Eacc<br>[MV/m] | Usable<br>Eacc<br>[MV/m] | Q0 at<br>16 MV/m<br>[1E10] | Q0 at<br>21 MV/m<br>[1E10] |                                          |
| N5                                                             | /                       | 24.6                               | 4.0                        | 4.4                        | 4.3                           | 26.6                  | 3.0                        | 3.0                        | 3.0                        | /                     | /                        | /                          | /                          | delivered to SHINE                       |
| N6                                                             | /                       | 23.6                               | 4.9                        | 5.0                        | 4.9                           | /                     | 1                          | 1                          | /                          | /                     | /                        | 1                          | /                          | bare tube without HOM                    |
| N7                                                             | /                       | 24.8                               | 4.1                        | 4.0                        | 3.8                           | 26.7                  | 3.6                        | 3.5                        | 3.3                        | /                     | /                        | 1                          | /                          | delivered to SHINE                       |
| N8                                                             | CAV6                    | 26.5                               | 4.1                        | 4.3                        | 4.2                           | 23.2                  | 3.5                        | 3.6                        | 3.5                        | 25.0                  | 24.0                     | 3.8                        | 3.8                        | in CM1                                   |
| N9                                                             | /                       | 22.7                               | 4.7                        | 4.5                        | /                             | 20.6                  | 3.7                        | 1                          | /                          | /                     | /                        | /                          | /                          | delivered to SHINE                       |
| N10                                                            | /                       | 24.0                               | 4.4                        | 4.7                        | 4.6                           | 27.0                  | 4.5                        | 4.4                        | 4.2                        | /                     | /                        | 1                          | /                          | delivered to SHINE                       |
| N11                                                            | CAV5                    | 31.3                               | 5.1                        | 5.4                        | 5.4                           | 27.2                  | 3.8                        | 4.0                        | 3.9                        | 26.5                  | 23.8                     | 4.0                        | 4.0                        | in CM1                                   |
| N12                                                            | CAV4                    | 29.7                               | 4.4                        | 4.6                        | 4.6                           | 28.0                  | 4.0                        | 4.1                        | 4.0                        | 27.7                  | 24.5                     | 4.0                        | 4.0                        | in CM1                                   |
| N13                                                            | CAV1                    | 24.0                               | 4.4                        | 4.5                        | 4.4                           | 23.3                  | 4.2                        | 4.4                        | 4.3                        | 26.6                  | 24.1                     | 3.7                        | 3.3                        | in CM1                                   |
| N14                                                            | CAV3                    | 25.9                               | 4.3                        | 4.4                        | 4.3                           | 25.7                  | 3.0                        | 3.1                        | 3.0                        | 24.6                  | 26.9                     | 3.4                        | 3.5                        | in CM1                                   |
| N15                                                            | CAV7                    | 26.1                               | 5.2                        | 5.0                        | 5.0                           | 25.1                  | 4.0                        | 3.9                        | 3.8                        | 21.7                  | 21.3                     | 2.6                        | /                          | in CM1                                   |
| N16                                                            | CAV8                    | 29.1                               | 4.3                        | 4.2                        | 4.0                           | 29.1                  | 4.3                        | 4.3                        | 4.1                        | 25.9                  | 25.8                     | 4.4                        | 4.7?                       | in CM1                                   |
| N17                                                            | /                       | /                                  | /                          | /                          | /                             | 30.0                  | 3.4                        | 1                          | /                          | /                     | /                        | /                          | /                          | for further study                        |
| N18                                                            | CAV2                    | 1                                  | /                          | /                          | /                             | 32.0                  | 2.6                        | 2.5                        | 2.5                        | 19.2                  | 18.5                     | 2.7                        | /                          | in CM1                                   |
| Avera                                                          | ge all                  | 26.0                               | 4.5                        | 4.6                        | 4.5                           | 25.7                  | 3.8                        | 3.8                        | 3.7                        | /                     | /                        | /                          | /                          | Average Q0 from total dynamic heat load: |
| Avera<br>CAVs                                                  | ige of<br>in CM1        | 27.5                               | 4.5                        | 4.6                        | 4.6                           | 26.7                  | 3.7                        | 3.7                        | 3.6                        | 24.7                  | 23.6                     | 3.6                        | 3.8?                       | 3.8E10@16 MV/m,<br>3.6E10@21 MV/m        |

#### **Magnetic Field Control**



Vacuum vessel degaussing



Double-layer magnetic shield





#### Fast / Slow Cooldown



### **Microphonics**

- Spec: Δf (Peak to Peak) < 10 Hz
- Test result:
  - $\pm 4$  Hz (3 MV/m open loop, eight cavities)
  - $\pm 7$  Hz (8 MV/m open loop, eight cavities)
  - ± 4 Hz (16 MV/m closed loop, two cavities)

GDR open or closed, calculate detuning with the phase:

 $\Delta f = (f_0/2Q_{\rm L}) \cdot \tan(\Delta \varphi)$ 

