# **Recent Status of SHINE High-Q Cavities and Cryomodules**

Jinfang Chen, SARI-CAS

2023.12.05

Fermilab **TESLA Technology Collaboration Meeting**December 5 - 8, 2023



## Outline

- Introduction
- High-Q Cavities
- Cryomodules
- Upgrade of SRF Infrastructures
- Summary



### Introduction

- **SHINE**, launched in 2017, groundbreaking in 2018, aiming at the first lasing in 2025.
- Accelerator: **an 8 GeV SRF linac**, 3 undulator lines, generating photons from 0.4-25 keV
- Cryomodules (CMs) requirements
  - 1 CM with one twin-FPC cavity
  - 75 CMs with eight 1.3 GHz high-Q cavities
  - 2 CMs with eight 3.9 GHz cavities



## Outline

- Introduction
- > High-Q Cavities
- Cryomodules
- Upgrade of SRF Infrastructures
- Summary



## **SC Cavities Ordered for SHINE Project**

In total, 4 cavity manufacturers chosen: two qualified domestic companies, and two mature international companies

5/15

- Cavities contracted: 264 cavities, in two batches, around half domestic and half international
  - Small-batch: 8 cavities each, most fabricated
  - Medium-batch: 40~72 cavities each, fabrication started

|                             | Domestic                          |                      | International     |              |
|-----------------------------|-----------------------------------|----------------------|-------------------|--------------|
| Nb materials                | TD                                | NX                   | NX                | NX           |
| 1.3GHz cavity manufacturing | HERT (8+72)                       | <b>OSTEC (8+</b> 40) | <b>RI (8+</b> 60) | ZANON (8+60) |
| High-Q recipes              | Mid-T baking, N-doping            |                      | N-doping          |              |
| Cavity-processing           | SHINE facilities at Wuxi Creative |                      | RI                | ZANON        |
| VT                          | Mainly at SHINE                   |                      |                   |              |
|                             |                                   |                      |                   |              |

### Small-batch Production – N-doped Cavities-



International manufacturers

SHINE

- 3/60 N-doping (dressed cavities tested)
  - Average Q<sub>0</sub> = 3.1E+10 at 16 MV/m
  - Average max  $E_{acc} = 26.0 \text{ MV/m}$

#### Main preparation steps



Nuclear Instruments and Methods in Physics Research A 1057 (2023) 168724



#### Full Length Article

Y. Zong  ${}^{a,c}$ , J.F. Chen  ${}^{a,b,c,d,*}$ , D. Wang  ${}^{a,b,c,d}$ , Q.X. Chen  ${}^{a,c}$ , Z.X. Chen  ${}^{d}$ , C.H. Cheng  ${}^{b}$ , P.C. Dong  ${}^{b}$ , H.T. Hou ${}^{b}$ , X. Huang  ${}^{a,c}$ , Y.W. Huang  ${}^{d}$ , X.Y. Pu ${}^{b}$ , X.H. Ouyang  ${}^{b}$ , J. Shi ${}^{b}$ , S. Sun ${}^{b}$ , R.Z Xia  ${}^{d}$ , S. Xing  ${}^{b}$ , Z. Wang  ${}^{a,c}$ , J.N. Wu ${}^{b}$ , X.W. Wu ${}^{e}$ , Y.F. Zhai ${}^{b}$ , S.J. Zhao ${}^{b}$ , Y.L. Zhao ${}^{b}$ 

<sup>a</sup> Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
<sup>b</sup> Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China

<sup>a</sup> Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, Cl <sup>c</sup> University of Chinese Academy of Sciences, 100049, Beijing, China

<sup>d</sup> ShanghaiTech University, 201210, Shanghai, China

e Zhangjiang Laboratory, 201210, Shanghai, China



## Small-batch Production – Mid-T Baked Cavities





- Domestic manufacturers, surface treated by SHINE facilities in Wuxi
- Mid-T baking (bare cavities tested)
  - Average Q<sub>0</sub> = 3.4E+10 at 16 MV/m (Flange losses not deducted)
  - Average max  $E_{acc} = 28.0 \text{ MV/m}$

### Small-batch Production – Mid-T Dressed Cavities

ő

 $1 \times 10^{10}$ 

0

Main preparation steps for small-batch dressed cavities



SHINE

**Dressed cavities (Mid-T baking)** 10<sup>3</sup>  $4 \times 10^{10}$ 10<sup>2</sup>  $3 \times 10^{10}$  $10^{1}$  $2 \times 10^{10}$ FE limit Ο Vendor1-08 VT@IHEP 2023.11 Vendor1-01 VT@PKU 2023.11 Vendor2-01 VT@SARI 2023.07 Vendor1-02 VT@SARI 2023.11 Vendor1-03 VT@SARI 2023.11 Vendor2-02 VT@SARI 2023.07

Radiation(µSv/h)

10<sup>0</sup>

35

Domestic manufacturers, mid-T baking (dressed cavities tested) ٠

 $E_{acc}(MV/m)$ 

15

Vendor2-03 VT@SARI 2023.08

Vendor2-04 VT@SARI 2023.08

Vendor2-05 VT@SARI 2023.07

25

30

20

- Average  $Q_0 = 3.1E + 10$  at 16 MV/m •
- Average max  $E_{acc} = 27.0$  MV/m

10

Vendor1-04 VT@IHEP 2023.11

Vendor1-05 VT@IHEP 2023.11

Vendor1-06 VT@IHEP 2023.11 Vendor1-07 VT@SARI 2023.11

5

### Mid-T baking: Q<sub>0</sub> from Bare Cavities to Dressed Cavities



(Flange losses not deducted)

SHINE

Bare cavities → dressed cavities

The average Q<sub>0</sub>@16-20MV/m decreased by 8% , from 3.4E+10 to 3.1E+10,

non-systematic,

It is also associated with the time of the vertical tests (before and after cryogenic upgrade at SARI) and the testing locations (SARI, IHEP, PKU)

### Mid-T baking: Max Eacc from Bare to Dressed Cavities

Bare Dressed



#### Bare cavities → Dressed cavities

**Max Eacc** 

The average max Eacc decreased by ~4%, from 28 to 27 MV/m, with some showing improvement, such as vendor1-04

All 13 cavities have met the SHINE specifications



## Outline

- Introduction
- High-Q cavities

#### > Cryomodules

- Upgrade of SRF Infrastructures
- Summary



## Cryomodules

#### Cryomodules (CMs) under development

#### L0

i1CM (1 twin-FPCs cavity): Waiting for horizontal test i8CM (ABBA, 8 mid-T baked cavities): under assembly

#### L1 CM01 (standard, 8 N-doped cavities): under horizontal test



#### **Related talks:**

- Design and fabrication of a twin-FPCs 1.3 GHz 9-cell cavity, Hongtao Hou (Dec.7, 14:15)
- 2. Manufacturing studies and RF test results of the 1.3 GHz FPCs for SHINE project, Zhenyu Ma (Dec.7, 12:15)
- 3. Heat load measurement and analysis for SHINE 1.3 GHz cryomodules, Yawei Huang (Dec. 6, 16:00)

#### i1CM at horizontal test stand



12/15

## **Upgrade of SRF Infrastructures**

- Upgrade of cryogenic system for vertical test stands (Aug-Nov, 2023)
  - Fast cooling ways
    - Before: Fast cooling with Refrigerator 150K-4.5K
    - > After: Direct cooling with LHe Dewar 300K-4.5K
  - Thermal gradient passing through 9.2 K
    - > **Before:** 9-cell cavity bottom < 0.4K/cm
    - ➤ After: 9-cell cavity entirely ≥ 0.8K/cm





13/15



- Mass production of SHINE high-Q cavities has started. Four manufacturers have been chosen.
- **The small batch cavities** (8 each) with N-doping or mid-T baking recipes, show good performance; some with FE, need re-HPR.
- Cryogenic system for vertical test stands has been upgraded since November, with better fast cooling capacity.
- First cryomodules are under assembly or test, including the two CMs for the injector, and the standard CM01 for L1.



#### Many thanks to:

- The cooperators: DESY, INFN-LASA, KEK, PKU, IHEP, DICP etc.
- The industrial suppliers both in international and domestic
- The people of SHINE SRF cryomodule team, cryogenic team

# Thank you for your attention!

