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▪ FRIB linac contains 94 quarter-wave resonators with 𝛽 = 0.085 (QWR, f = 80.5 MHz, T = 2 K, 
4.3 K); prep: buffered chemical polishing (BCP)

▪BCP + in-situ low-temperature bake (LTB,120 C, 48hrs) improves medium field Q-slope 
(MFQS) at 4.3 K

Introduction
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▪Cause for reduction in MFQS? How 
to utilize it?

▪Examine the BCS resistance in 
three different baking scenarios
• In-situ LTB: 120 C 48hr

• Furnace LTB: 120 C 48hr

• Furnace medium temp. bake (MTB): 
350 C 3hr
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▪Goal: isolate BCS resistance and the effect of baking

▪Note: FRIB QWRs use indium gasket as RF seal
• Seating of gasket has impact on residual resistance
»Residual resistance is dominant component for FRIB QWR at 2 K

Goal and Methodology
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▪ In rough approximation, ignore 
BCS contribution at 2K
• 𝑅𝑠 2𝐾, 𝐵𝑝𝑘 ≈ 𝑅𝑟𝑒𝑠(𝐵𝑝𝑘)

• 𝑅𝐵𝐶𝑆 ≈ 𝑅𝑠 4.3𝐾, 𝐵𝑝𝑘 − 𝑅𝑟𝑒𝑠(2𝐾, 𝐵𝑝𝑘)
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▪ Hypothesis: improvement in MFQS is due to 
improved thermal impedance

• Shown anodized cavity has increased 
performance ~4 K [1]

▪ First case to look at: S85-990

• Baseline

• BCP + 120C in-situ bake

• Post-test BCP, then retest. Performance 
within variation for un-baked cavities

• BCP + 120C in-situ again

▪ Effect of first bake reset by BCP

• Then recovered by second bake

▪ Conclusion: improved MFQS not necessarily 
due to improved thermal impedance

Effect of BCP Reset
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[1] M. Checchin, et. al., Proc. Of SRF2013
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▪ Test furnace LTB and compare the result with in-situ LTB
• Resulting Q-curve is in red

▪Can see that furnace configuration yields similar MFQS improvement
• Bottom flange (Ti) and tuning plate (Nb) are not baked in furnace baking

In-situ vs. Furnace LTB
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Furnace bake setup. Image courtesy of B. 

Barker



Furnace MTB

▪ Test for our first furnace MTB (350 C, 3hr)

▪ Isolate BCS resistance at 4.3 K, compare 
with other bake tests
• Included are baseline tests, dots

▪Performance is more in-line with unbaked 
cavity at 4.3 K
• Trend agrees with findings of mid-T bake at 4 

K by TRIUMF [2]
»Results shown from 220 MHz multimode QWR 

and HWR 

▪Cannot preform in-situ MTB due to indium 
seal for bottom flange 

TRIUMF

[2] P. Kolb et. al., Mid-T Heat Treatments of BCPed 

Coaxial Cavities at TRIUMF, 2023, 

https://doi.org/10.48550/arXiv.2306.12588 

https://doi.org/10.48550/arXiv.2306.12588
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▪Previously: had testing availability to take 
CW data at multiple temperatures for 
furnace LTB
• Cryogenic stability: ±0.01 𝐾 on average

• Interested in transition in trend from 
quadratic and linear as T decreases
»Expected sharp transition in curve through 𝑇𝜆, 

as seen in other geometries/freq. [3]

Rs v. Field and T
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▪Next steps: use simple fitting model at first  
[4]:𝑐0 + 𝑐1𝑏 + 𝑐2𝑏2

• 𝑐1 is associated with hysteresis losses, 𝑐2 carries 
thermal feedback and pair-breaking losses 
information [5]

▪Redo this measurement when available
• Measure another LTB cavity with more data sets 

below 𝑇𝜆

• Measure an un-baked cavity to compare with; 
reduction of 𝑐1 would suggest diffusion of oxygen 
away from surface [6, 7] as explanation of MFQS 
reduction

[3] C. C. Compton, et. Al, 

Phys. 

Rev. Accel. Beams 

8.042003, 2005

[4] K. McGee, et. al.,, Phys. Rev. Accel. 

Beams 24.112003, 2021,

https://doi.org/10.1103/PhysRevAccelBeams.2

4.112003  

[5] G. Ciovati, J. Halbritter, Physica C: 

Superconductivity, Issues 1-2

Vol. 441, pp 57-61, 

https://doi.org/10.1016/j.physc.2006.03.053. 

[6] A. Romanenko, proc. of TTC 2020, 

https://indi.to/mfBdR 

[7] K. Saito, Proc. Of SRF 2021, 

https://doi.org/10.18429/JACoW-

SRF2021-WEPFDV004 

https://doi.org/10.1103/PhysRevAccelBeams.24.112003
https://doi.org/10.1103/PhysRevAccelBeams.24.112003
https://doi.org/10.1016/j.physc.2006.03.053
https://indi.to/mfBdR
https://doi.org/10.18429/JACoW-SRF2021-WEPFDV004
https://doi.org/10.18429/JACoW-SRF2021-WEPFDV004
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▪ Found that LTB improves MFQS for FRIB 𝛽 = 0.085, 80.5 MHz QWRs at 4.3 K
• See from decomposition of 𝑅𝑠 that improvement comes from change in BCS

• Furnace LTB has similar improvement to in-situ LTB

▪MTB doesn’t offer improved MFQS for FRIB QWRs
• Difference in frequency, much lower

• Difference in surface treatment: EP v. BCP

▪When available, continue examination of trend of MFQS with temperature

▪Developed a new recipe for spare FRIB QWRs production
• Bulk BCP, 600 C H degas, light BCP, 120 C 48hr furnace LTB, and high pressure rinse

Summary
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Thank you! Questions?
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Full Citations
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Extra Slides: Partial Pressure Readouts for LTBs (Furnace 
left, in-situ right)

J. Brown, WG1 TTC 2023, Slide 11

Partial Pressures for In-situ LTB 



▪Case of EP+In-situ LTB FRIB 𝛽 = 0.65 644 MHz upgrade cavity
• Simple model of normalized resistance using a constant residual resistance

• CW data over MF region, see two distinct bands for Q-slope as function of field
» 𝑇 > 𝑇𝜆 and 𝑇 < 𝑇𝜆

Extra Slides: Motivation
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▪See shift in slope as LHe 
transitions to superfluid
• Suggests MFQS can be improved 

by further improving thermal 
impedance

▪Plethora of QWR LTB and 
baselines for FRIB
• Reproduce and refine analysis 

with more updated model



▪Previously: taking residual resistance to be a constant
• In reality, residual resistance changes with cool down sensitivity and that 𝑅𝑟𝑒𝑠 = 𝑅𝑟𝑒𝑠(𝐵𝑝𝑘)

▪Want: isolate the BCS resistance at 4.3K to examine change in MFQS
• How: From idealized model: 𝑅𝐵𝐶𝑆 2𝐾, 80.5𝑀𝐻𝑧 ≈ 0.04 𝑛Ω

Extra Slides: Data Treatment
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▪ For 11 baked cavities: 
𝑅𝐵𝐶𝑆,𝑎𝑣𝑔 = 0.199 𝑛Ω at 2K-
1.8K

▪ For 13 baked cavities: 
𝑅𝐵𝐶𝑆,𝑎𝑣𝑔 = 0.506 𝑛Ω at 2K

▪ First order approx: ignore 
BCS at 2K for QWR
• → 𝑅𝑠 2𝐾, 𝐵𝑝𝑘 ≈ 𝑅𝑟𝑒𝑠(𝐵𝑝𝑘)



Extra Slides: Unbaked Cooldown
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Extra Slide: 2 K Q-curves
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