

Interstitial oxygen tailoring by various surface treatments and how it impacts Q₀

<u>Rezvan Ghanbari</u>, Marc Wenskat – on behalf of the UHH SRF R&D Team

Extensive HPR

[Ghanbari, R. TTC Workshop 2022, Aomori]

18x HPR is not beneficial for Q₀

Different treatments – same rf behaviour

It's not the cavity!

Dip is deeper for $18 \times HPR - \Delta f_{tot}$ similar

Cavity	Treatment	∆f _{dip} /kHz
1DE19	4.5h @ 335°C	1.1
1AC02	3.25h @ 335°C	1.4
1RI04	3h @ 250°C	0.9
1DE07	20h @ 250°C	2.0
1DE79	18xHPR + 3h @ 300°C	3.9

How much O is good? | Marc Wenskat | 5.12. - TTC Workshop @ FNAL

What information is encoded in f vs. T?

How much O is good? | Marc Wenskat | 5.12. - TTC Workshop @ FNAL

Microscopic model for disordered superconductor

- An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%
 - to have a dip minimum at 9.1K we would need ≈ 0.2 at.%
 - "end of dip" around 8.9K \approx 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

[Benvenuti, C., et al. 10th *SRF* (2001): p441.] [Kolchin, O.P., et al. *Soviet Atomic Energy 45 (4) (1978): p999.*]

- We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by [Dangwal Pandey, A., et al. Appl. Phys. Lett. 119(2021): 194102]
 - → Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration
- \rightarrow Expect non-constant (gaussian shaped) T_c reduction
- \rightarrow Lowest T_c equal to the max. at.% concentration at RT (≈ 0.33 at.%)
- \rightarrow Only locally saturated not globally. If SIMS spot size \approx multiple grains, obtained c₀ below saturation limit

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

Disordered superconductor show dip

[Barra, M., et al. SUST 18.3 (2005): 271.]

If it acts the same – is it the same?

3h@300°C ≠ 3h@300°C

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

High thermal budget

- Diffuse O out of RF layer
 - \rightarrow HFQS reappears and Δf_{tot} / Δf_{dip} decreases again

Cavity	Treatment	∆f _{tot} /kHz	∆f _{dip} /kHz
LDE19	4.5h @ 335°C	11.7	1.1
AC02	3.25h @ 335°C	12.3	1.4
LRI04	3h @ 250°C	18.4	0.9
LDE12	3h @350°C	8.3	0.52

Is there an optimal O-concentration?

Correlation with thermal budget?

Assumed Δf is depends $c_0 \dots$

and we know that NSF c_0 goes down with larger thermal budget / larger $\langle z \rangle$...

some correlation of Q_0 with $\langle z \rangle$ expected as well – yet weaker as Fick's law does not accomodate uneven GB diffusion / saturation effects

Conclusion

- Too high c_o near the surface is not good
 - 18xHPR before midT of 1DE7
 - 1xmidT vs. 2xmidT of 1DE10
- Too low c_o leads to HFQS again
 1DE12 or every 800°C reset
- Optimal recipe depends on furnace "thermal budget"
 1DE10 vs. 1DE18
- Sweet spot for Q₀ seems to exist right amount of disorder ?
 continue investigation & model building (Δf_{tot} vs. Δf_{dip}, E_{acc}, grain mapping)

Thanks...

- to **DESY** for the cavity measurements
- to **you** for listening
- to the **conveners** for the opportunity to present this work

Questions?

Contact:

Rezvan Ghanbari

Universität Hamburg

Institute of Experimental Physics

E-Mail: rezvan.ghanbari@desy.de

Back Up

Current Redistribution

[Checchin, M. et al., Appl. Phys. Lett. 117, 032601 (2020)] [Pambianchi, M. et al., Phys. Rev. B 50, 13659]

Consequence: Currents shifted away from the surface where "lossy mechanism(s)" occur

Frequency shift is frequency dependent

- Q_n = n x 433MHz
- Lower frequency $f_{op} \rightarrow \text{lower } \Delta f_{tot}$
- That is because Γ is frequency dependent
- If the dip is caused by current redistribution $\rightarrow \Delta f_{dip}$ should depend on f_{op} as well