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Continuation of Low RRR Studies

* Many SRF studies follow a “clean bulk dirty surface” technique to
optimize the BCS resistance by adding extrinsic impurities

— Low temperature bake and N-doping are current focus
* What role do intrinsic impurities serve?

— Might perform similar functions as extrinsic impurities which have
been shown to improve performance

« Goal: use understanding of intrinsic impurities to design future surface
treatments for high gradient and quality factor

— Taking new avenue by studying low RRR cavities
— Low purity Nb = increased concentration of intrinsic impurities

— Taking a deep dive in characterizing performance with TMAP
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— Low temperature bake and N-doping are current focus 5 )
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* Goal: use understanding of intrinsic impurities to design future surface

treatments for high gradient and quality factor
Surface treatments

— Taking new avenue by studying low RRR cavities appear to vary cavity

— Low purity Nb = increased concentration of intrinsic impurities performance, but
slightly differently

— Taking a deep dive in characterizing performance with TMAP when compared to

high RRR cavities
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Observe many of the
phenomena
characteristic of each
treatment, but again
to slightly different
extents

BCS Resistance vs Gradient at 2 K
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Using TMAP to Further Characterize
Performance of Low RRR Cavities
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Sequential TMAP Study on Single Low RRR Nb SRF Cavity

« 1.3 GHz TESLA-shaped single-cell low RRR o
(= 61) cavity

» RF testing after surface treatments o - ‘ 16 RTD’s
per board

— Electropolished (40 ym EP for baseline)

— Low temperature bake (120 °C x 48 hours)

.....

— N-doping (2/6 recipe with 5 ym EP)

— Underdoped (additional 2 ym EP from N-
doped surface)

36 boards
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Sequential TMAP Study 1/4: EP
— Cauvity received 40 ym EP to reset surface
— Low RRR has slightly lower Q, than high RRR
— Q, slope begins sooner but less sharp than high RRR

5 X 1010 Quality Factor vs Gradient
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Sequential TMAP Study 1/4: EP

— Cauvity received 40 ym EP to reset surface

— More localized heating but not only at quench location

TMAP Profile Just Before Quench
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Sequential TMAP Study 2/4: LTB
— Low temperature bake (120 °C x 48 hours)

— Low RRR experiences reduced response to LTB treatment

5 X 1010 Quality Factor vs Gradient
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Sequential TMAP Study 2/4: LTB

— Low temperature bake (120 °C x 48 hours)

— More widespread heating, including at quench location

5 X107 Quality Factor vs Gradient TMAP Profile Just Before Quench
45+ © * 2KLTB L. time =2:35:51, He bath temp =1.519500 K, Eacc =32.566
% (gB@Oooo O LowTLTB top iris
418 Oooo
o)
35} -
%o
%0
o 3 Oq
e OOO ©
257} % E
o g Cq equator %
o o
2 * ow % L . %
* * -
15+ L2
&
1 -
0 5 10 15 20 25 30 35 bottom iris
E.__ (MV/im)

acce

-] THE UNIVERSITY OF

10 Dec 5, 2023 Katrina Howard | TTC2023 at Fermilab | Update on Analysis of Low RRR SRF Cavities 2
i Wi | ilab | Up ysi w viti <) CHICAGO



Sequential TMAP Study 3/4: N-doped

— N-doping 2/6 recipe with 5 ym EP
— Much lower Q, than high RRR but similar gradients reached

5 X 101¢ Quality Factor vs Gradient
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Sequential TMAP Study 3/4: N-doped
— N-doping 2/6 recipe with 5 ym EP

— More widespread heating, not specifically at quench location

TMAP Profile Just Before Quench
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Sequential TMAP Study 4/4: Underdoped

— Underdoped (additional 2 ym EP from N-doped surface) to see how decreasing N
concentration changes performance

— Significantly lower Q, but reaches higher gradient than N-doped

g X 1010 Quality Factor vs Gradient
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Sequential TMAP Study 4/4: Underdoped

— Underdoped (additional 2 ym EP from N-doped surface) to see how decreasing N
concentration changes performance

— More localized heating, including at quench location
TMAP Profile Just Before Quench
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Comparing TMAPs for All Studied Treatments
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Comparing TMAPs for All Studied Treatments
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Comparing Quench Spot Heating Profiles

EP: Change in Slope Quench Spots Heating During Low T Testing
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Comparing Quench Spot Heating Profiles

EP: Change in Slope Quench Spots Heating During Low T Testing
corresponds to onset of HFQS ol
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Comparing Quench Spot Heating Profiles

EP: Change in Slope Quench Spots Heating During Low T Testing
corresponds to onset of HFQS -
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Comparing Quench Spot Heating Profiles

EP: Change in slope
corresponds to onset of HFQS

LTB: Delay in Q-slope means
we do not see onset of
additional losses

quench of magnetic
origin so we do not see change
in heating slope
Large heating
corresponds to large losses
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Quench Spots Heating During Low T Testing
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Comparing Quench Spot Heating Profiles

EP: Change in slope CorreSpondS Quench Spots Heating During Low T Testing
to onset of HFQS
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Cavity Performance Summary

« Lower quality factors but reach similar gradients
— ~1.5e10 at ~20 MV/m for 2K

« Larger heating at quench locations but less sudden changes in slope
— More magnetic quench behavior (less thermal)

« Combined effects of intrinsic and extrinsic impurities

Next Steps

« Sample Study: identifying key impurity
« Calculation of mean free path from frequency vs temperature data

« N-infusion cavity testing and sample study
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Discussion Topics
 How was RRR determined and how can we remeasure?
— Cell material from Tokyo Denkai (Ta Wt % .0193, RRR = 61)

« How might oxygen and nitrogen behave differently in a Nb lattice with more
Impurities?

* How can intrinsic impurities affect the sensitivity to trapped flux?

— Especially in N-doped and underdoped

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics. This work was supported by the University of Chicago.
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Extra Slides
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Quality Factor vs Accelerating Gradient at 2 K
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Residual Resistance vs Accelerating Gradient

* Low RRR EP and LTB R, equal
at low and mid fields

« LTB treatment enables smallest
Increase with gradient

* N-doped R, always slightly
larger than EP and LTB

* Underdoped shows increase
from N-doped

Low RRR High RRR

EP Q (m]
LTB | 7 | O
N-doped A 2T
Underdoped > 0 \ \
10 15
26 Dec 5, 2023  Katrina Howard | TTC2023 at Fermilab | Update on Analysis of Low RRR SRF Cavities

181

161

14r

G=270()
res — Q,(lowT)

Residual Resistance vs Gradient

2% Fermilab

7] THE UNIVERSITY OF

& CHICAGO




BCS Resistance vs Accelerating Gradient

Low RRR exhibits low BCS
behavior

* Low RRR Rgg is lowest at mid
field

* Any benefit of dirty surface is
lost at high field in EP and LTB

* N-doped has lower Rg5 than EP
and LTB

Low RRR High RRR
EP O 0o
LTB | 7 | O
N-doped A
Underdoped [>
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BCS Resistance vs Gradient at 2 K
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Effect of Doping Severity
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