

Update on Analysis of Low RRR SRF Cavities

Katrina Howard, Daniel Bafia, Young-Kee Kim TTC2023 at Fermilab 5 December 2023

In partnership with:

Continuation of Low RRR Studies

- Many SRF studies follow a "clean bulk dirty surface" technique to optimize the BCS resistance by adding extrinsic impurities
 - Low temperature bake and N-doping are current focus
- What role do intrinsic impurities serve?
 - Might perform similar functions as extrinsic impurities which have been shown to improve performance
- Goal: use understanding of intrinsic impurities to design future surface treatments for high gradient and quality factor
 - Taking new avenue by studying low RRR cavities
 - Low purity Nb → increased concentration of intrinsic impurities
 - Taking a deep dive in characterizing performance with TMAP

Continuation of Low RRR Studies

- Many SRF studies follow a "clean bulk dirty surface" technique to optimize the BCS resistance by adding extrinsic impurities
 - Low temperature bake and N-doping are current focus
- What role do intrinsic impurities serve?
 - Might perform similar functions as extrinsic impurities which have been shown to improve performance
- Goal: use understanding of intrinsic impurities to design future surface treatments for high gradient and quality factor
 - Taking new avenue by studying low RRR cavities
 - Low purity Nb → increased concentration of intrinsic impurities
 - Taking a deep dive in characterizing performance with TMAP

Surface treatments appear to vary cavity performance, but slightly differently when compared to high RRR cavities

Continuation of Low RRR Studies

- Many SRF studies follow a "clean bulk dirty surface" technique to optimize the BCS resistance by adding extrinsic impurities
 - Low temperature bake and N-doping are current focus
- What role do intrinsic impurities serve?
 - Might perform similar functions as extrinsic impurities which have been shown to improve performance
- Goal: use understanding of intrinsic impurities to design future surface treatments for high gradient and quality factor
 - Taking new avenue by studying low RRR cavities
 - Low purity Nb → increased concentration of intrinsic impurities
 - Taking a deep dive in characterizing performance with TMAP

Observe many of the phenomena characteristic of each treatment, but again to slightly different extents

Using TMAP to Further Characterize Performance of Low RRR Cavities

Sequential TMAP Study on Single Low RRR Nb SRF Cavity

- 1.3 GHz TESLA-shaped single-cell low RRR (= 61) cavity
- RF testing after surface treatments
 - Electropolished (40 µm EP for baseline)
 - Low temperature bake (120 °C x 48 hours)
 - N-doping (2/6 recipe with 5 µm EP)
 - Underdoped (additional 2 µm EP from Ndoped surface)

Sequential TMAP Study 1/4: EP

- Cavity received 40 µm EP to reset surface
- Low RRR has slightly lower Q₀ than high RRR
- Q₀ slope begins sooner but less sharp than high RRR

Fermilab

Sequential TMAP Study 1/4: EP

- Cavity received 40 µm EP to reset surface _
- More localized heating but not only at quench location

CHICAGO

Katrina Howard | TTC2023 at Fermilab | Update on Analysis of Low RRR SRF Cavities Dec 5, 2023

8

Sequential TMAP Study 2/4: LTB

- Low temperature bake (120 °C x 48 hours)
- Low RRR experiences reduced response to LTB treatment

Sequential TMAP Study 2/4: LTB

- Low temperature bake (120 °C x 48 hours) _
- More widespread heating, including at quench location _

Sequential TMAP Study 3/4: N-doped

- N-doping 2/6 recipe with 5 μm EP
- Much lower Q₀ than high RRR but similar gradients reached

Fermilab

Sequential TMAP Study 3/4: N-doped

- N-doping 2/6 recipe with 5 µm EP
- More widespread heating, not specifically at quench location

Sequential TMAP Study 4/4: Underdoped

Underdoped (additional 2 µm EP from N-doped surface) to see how decreasing N concentration changes performance

‡ Fermilab

CHICAGO

- Significantly lower Q₀ but reaches higher gradient than N-doped

Sequential TMAP Study 4/4: Underdoped

- Underdoped (additional 2 µm EP from N-doped surface) to see how decreasing N concentration changes performance
- More localized heating, including at quench location

TMAP Profile Just Before Quench

Comparing TMAPs for All Studied Treatments

EP

LTB

N-doped

Quality Factor vs Gradient

Underdoped

CHICAGO

Fermilab

15

Comparing TMAPs for All Studied Treatments

Katrina Howard | TTC2023 at Fermilab | Update on Analysis of Low RRR SRF Cavities Dec 5, 2023

16

EP: Change in slope corresponds to onset of HFQS

EP: Change in slope corresponds to onset of HFQS LTB: Delay in Q-slope means we do not see onset of additional losses

EP: Change in slope corresponds to onset of HFQS LTB: Delay in Q-slope means we do not see onset of additional losses N-Doped: quench of magnetic origin so we do not see change in boating clope

in heating slope

EP: Change in slope corresponds to onset of HFQS LTB: Delay in Q-slope means we do not see onset of additional losses N-Doped: quench of magnetic origin so we do not see change in heating slope Underdoped: Large heating corresponds to large losses

- **EP:** Change in slope corresponds to onset of HFQS
- LTB: Delay in Q-slope means we do not see onset of additional losses
- N-Doped: quench of magnetic origin so we do not see change in heating slope
- Underdoped: Large heating corresponds to large losses
- Compare against high RRR EP:
- Lower initial heating due to low impurity concentration
- Sharper change in slope than low RRR EP because of stronger HFQS onset (thermal quench)

21

Quench Spots Heating During Low T Testing 10⁰ Low RRR EP -Low RRR LTB Low RRR N-doped Low RRR Underdoped High RRR EP 10-1 Temperature (K) 10-2 10-3 1 10 101 10^{2} H field (mT)

🚰 Fermilab

Cavity Performance Summary

- Lower quality factors but reach similar gradients
 - ~1.5e10 at ~20 MV/m for 2K
- Larger heating at quench locations but less sudden changes in slope
 - More magnetic quench behavior (less thermal)
- Combined effects of intrinsic and extrinsic impurities

Next Steps

- Sample Study: identifying key impurity
- Calculation of mean free path from frequency vs temperature data
- N-infusion cavity testing and sample study

Discussion Topics

- How was RRR determined and how can we remeasure?
 - Cell material from Tokyo Denkai (Ta Wt % .0193, RRR = 61)
- How might oxygen and nitrogen behave differently in a Nb lattice with more impurities?
- How can intrinsic impurities affect the sensitivity to trapped flux?
 - Especially in N-doped and underdoped

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This work was supported by the University of Chicago.

Extra Slides

CHICAGO

24 Dec 5, 2023 Katrina Howard | TTC2023 at Fermilab | Update on Analysis of Low RRR SRF Cavities

Quality Factor vs Accelerating Gradient at 2 K

- Performance of EP, LTB, and Ndoped are similar at medium gradients
- LTB delays Q₀ slope and reaches highest Q₀ and gradient
- N-doping reaches lowest gradient
- Underdoped has lowest Q₀

	Low RRR	High RRR
EP	\diamond	
LTB	×	0
N-doped	\bigtriangledown	Δ
Underdoped	4	⊳

Residual Resistance vs Accelerating Gradient

- Low RRR EP and LTB R_r equal at low and mid fields
- LTB treatment enables smallest increase with gradient
- N-doped R_r always slightly larger than EP and LTB
- Underdoped shows increase
 from N-doped

	Low RRR	High RRR
EP	\diamond	
LTB	*	0
N-doped	\bigtriangledown	Δ
Underdoped	<	⊳

😤 Fermilab

 $G=270 \Omega$

 $Q_{o}(low T)$

R_{res}

BCS Resistance vs Accelerating Gradient

Low RRR exhibits low BCS behavior

- Low RRR R_{BCS} is lowest at mid field
- Any benefit of dirty surface is lost at high field in EP and LTB
- N-doped has lower R_{BCS} than EP and LTB

	Low RRR	High RRR
EP	\diamond	
LTB	*	0
N-doped	\bigtriangledown	Δ
Underdoped	⊲	⊳

$R_{BCS}(2K) = R_s(2K) - R_{res}$

CHICAGO

Fermilab

Effect of Doping Severity

Response of RTD Sensor Closest to Quench Spot vs Magnetic Field

N-doping severity effect on BCS resistance Daniel Bafia's Thesis Fig 6.7b N-doping severity effect on heating at quench spots Daniel Bafia TTC'20

