beta-SRF Highlights

Edward Thoeng
PhD Student – TRIUMF SRF Group/UBC

Robert E. Laxdal
Head - TRIUMF SRF/RF Department
Deputy Director – TRIUMF Accel. Division
Outline

• Introduction/Motivation
• Beta-NMR Technique
• Results Highlights
• Summary & future outlook
SRF Cavities Performance

- **Ultimate Goal:**
 - high $Q \rightarrow$ cheaper operation
 - high gradient \rightarrow shorter LINAC

- **Underlying mechanisms?**
 - Macroscopic performance very sensitive to surface treatment
 - Nonlinear field dependence (Q-slope, B_{quench})

- **Empirical solutions:**
 - Impurity engineering (baking, doping)
 - Thin film overlayer(s)
Nanometric Subsurface Role

- **Achieving ideal performance**
 - Accel. Gradient limit:
 - Sustain Meissner phase to the limiting field (B_{limit})
 - Screened magnetic fields within λ

- **How do the subsurface variations & modifications affect**
 - Meissner limiting field: B_{limit} ?
 - Screening response: λ vs. treatment ?
 - Field dependence: λ vs. B_{app} ?
SRF Samples Characterization

- **Requirements:**
 - *local field* within the London layer
 - *depth-resolved* (within ~ 100 nm): $B(x)$
 - up to B_{limit} ~ 200 mT: $B(x)$ vs B_{applied}

- **Radioactive spin-polarized ions**
 - ion implantation $E \rightarrow$ nm-scale, depth-resolved
 - asymmetric radioactive decay → direct monitor of spin-polarization
 - local field → evolution of spin-polarization

- **Two facilities at TRIUMF**
 - HE-μSR: bulk probe (100 µm)
 - β-NMR: nm depth resolved (0 – 100 nm)

β-SRF beamline:
- high-parallel fields (200 mT)
- nm-scale depth resolved
- local field measurements
βSRF beamline

Main challenge

- Low energy (decelerated) ions in large stray fields → strong (transverse) deflection
- Beam steering optics + diagnostics
- Design + commissioning + first measurements:

Rev Sci Instrum 94, 023305 (2023)
The beta-SRF Experiments

SAMPLES

Two Nb samples measured: RRR Niobium

- **“Baseline”**:
 - 1400 °C annealing for 4 hours + BCP
- Custom treated with mid-T bake ("Oxygen doped"):
 - “Baseline” + 400°C for 3 hours
- Field screening with applied fields 100 → 200 mT
A) Spin-lattice relaxation rate

1. Depth-resolved:
 - Varies implantation energies
 - Energy ~ depth

2. Local field sensitivity:
 - Probes spins depolarizes in sample → direct monitor β-decay
 - Char. depol. time = SLR rate $1/T_1$
 - Local B-field “slows-down” relaxation

\[
\frac{1}{T_1} = \frac{a}{b + B^2}
\]
A) Spin-lattice relaxation rate data

3. Increase B_{applied}:

Baseline

![Graph showing 1/T1 vs. E for Baseline with lines for 100 mT and 200 mT]

O-doped

![Graph showing 1/T1 vs. E for O-doped with lines for 100 mT and 200 mT]
Due to stopping distribution:

- Measured = average \(\langle 1/T_1 \rangle \)
- \(B \rightarrow \langle B \rangle_E = \int \rho_E(x)B(x) \, dx \)

B) Mapping 1/T1 to Average Field \(\langle B \rangle_E \)

\[
B(x) = B_{surf} \exp\left(-\frac{(x - \tilde{d})}{\tilde{\Lambda}}\right)
\]

\(\tilde{\Lambda} \): screening penetration depth
\(\tilde{d} \): dead layer

\(B_{surf} \) (Meissner)

- Baseline: 8.1%
- O-doped: 4.3%

Lorentzian Mapping:
Applied to other fields – extract \(\tilde{\Lambda}(B_a), B_{surf} (B_a) \)
B) Average Field Results

\[\left\{ \frac{1}{T_1} \right\}(E) = \frac{a}{b + \langle B \rangle_E^2} \]

Different screening between the two samples
B) Average Field Results

Baseline

No screening at 200 mT

Screening diminishes with increasing fields

O-doped

\[B_{\text{app}} \text{[mT]}: \]
- 100
- 110
- 125
- 150
- 200

\[\langle B \rangle \text{ (mT)} \]

E (keV)

E (keV)
C) Local Field Analysis

More refined analysis:

- Directly average \(\langle 1/T_1 \rangle_E \) instead of \(\langle B \rangle_E \)
 - individual ion relaxes with rate \(1/T_1(x) \)
 - No E-mapping: \(\langle 1/T_1 \rangle_E \rightarrow \langle B \rangle_E \)
- Map \(B(x) \) to \(1/T_1(x) \): more accurate modified Lorentzian \(\mathcal{L}^* \)
 (different probe vs. Nb nuclear spins)
- Same \(B(x) \) model

\[
B(x) = B_{surf} \exp\left(-\left(x - \bar{d}\right)/\bar{\Lambda}\right)
\]

\[
\frac{1}{T_1}(x) = \mathcal{L}^* \left[B(x)\right]
\]

\[
\left\langle \frac{1}{T_1} \right\rangle_E = \int \rho_E(x) \frac{1}{T_1}(x) \, dx
\]

100 mT, 200 mT

Calculated

Measured

Best \(\mathcal{L}^* \)

Using best-fit \(\mathcal{L}^* \), extract:

- \(\bar{\Lambda}(B_{app}) \): screening penetration depth
- \(B_{surf}(B_{app}) \): enhanced field at surface
C) Local Field Analysis Results

\[
\left\langle \frac{1}{T_1} \right\rangle_E = \int \rho_E(x) \mathcal{L}^* [B(x)] dx
\]

Baseline

O-doped

![Graph showing magnetic field (B) as a function of depth (x) for different applied fields (B_{app}) in Baseline and O-doped samples. The dead layer is indicated by a shaded area.]
Results: Field-dependent Screening Penetration Depth (\(\Lambda\))

\[\lambda(0K) = \lambda_L \sqrt{1 + \frac{\xi_0}{L}} \]

\(\Lambda = \langle \lambda, n_v(x) \rangle\)
- \(\lambda\): Meissner
- \(n_v(x)\): Vortex

<table>
<thead>
<tr>
<th>(B_{\text{app}}) (mT)</th>
<th>(\Lambda) (Baseline) (nm)</th>
<th>(\Lambda) (O-doped) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>43</td>
<td>147</td>
</tr>
<tr>
<td>110</td>
<td>66</td>
<td>220</td>
</tr>
<tr>
<td>125</td>
<td>128</td>
<td>273</td>
</tr>
<tr>
<td>150</td>
<td>184</td>
<td>624</td>
</tr>
</tbody>
</table>
Results Highlights: Meissner Region

Flux entry detection via
- reduced surface enhancement B_{surf}
- Define $\chi [0,1]$, ~ flux free volume fraction:
 - $\chi = 1$ (Meissner)
 - $\chi < 1$ (mixed state)
 - $\chi = 0$ (vortex state)

Brandt's formulation:
$B_{entry} = B_{c1} \times \tanh(\sqrt{0.36 \times c/a})$
- Baseline: 121 mT
- O-doped: 127 mT

<table>
<thead>
<tr>
<th>B_{app} (mT)</th>
<th>χ</th>
<th>SPD (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>110</td>
<td>0.15</td>
<td>66</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>184</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B_{app} (mT)</th>
<th>χ</th>
<th>SPD (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>147</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>273</td>
</tr>
<tr>
<td>150</td>
<td>0.59</td>
<td>624</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>
Interesting Features: Strong Field Dependence (O-doped)

- Meissner region @ B = 100-125 mT:

- Field dependence due to T_c
 - Two-fluid model: λ diverges at T_c

 $$\lambda(T) = \frac{\lambda(0)}{\sqrt{1-(T/T_c)^4}}$$

 $$T_c(B) = T_c(B = 0) \left(\frac{1 - (B/B_{c2})}{1 + (B/B_{c2})} \right)$$

Variation of T_c due to high O-concentration (O-doping) ?

- T_c varies with O-concentration

- Best-fit value of T_c, but seems very low
Interesting Features (2): Nonlinear Meissner Effect

- **Nonlinear Meissner Effect:** additional increase due to quadratic field dependence

\[
\lambda(T, B) = \lambda(T, 0) \left[1 + \beta \left(\frac{B_{surf}}{B_c} \right)^2 \right]
\]

- from Ginzburg-Landau (GL) theory:

\[
\beta = \frac{\kappa(\kappa + 2^{3/2})}{8(\kappa + 2^{1/2})^2}
\]

- predicts \(\beta \approx 0.12\). Best-fit at \(\beta \approx 3\), prefactor 25x larger than GL

- **combined NLME + reduced Tc:**

- if \(\beta_{\text{max}}\) bounded to \(\beta = 1 + \text{vary } T_c\), best fit for \(T_c \approx 7\)K due to e.g., O-concentration \(\sim 2\) [at\%] [C.C. Koch, et al. Phys. Rev. B 9, 888 (1974)]

- localized vortex nucleation?
Summary & Future Outlook

Demonstrates β-SRF ability for:
- Clear differences in penetration depth between different treatment
- Clear evolution from Meissner state into mixed state
- Strong field dependence of penetration depth
- Proof of principle + potential to shed new light of SRF materials
- Details → manuscript in preparation

Recent studies:
1. **SIS multilayer: NbTiN/AlN/Nb:**
 Md. Asaduzzaman + T. Junginger (Y. Kalboussi + T. Proslie, CEA Saclay)
 ❖ Measured at perp. field spectrometer (4.1 T) → study vortex state
 ❖ Characterize suitable measurement conditions for β-SRF beamline (B_∥ ≤ 200 mT)

2. **Nb thin film + Nb oxide (Qubit):** Fermilab SQMS + TRIUMF SRF/CMMS
Acknowledgement

- **SRF Group:**
 - P. Kolb, Md. Asaduzzaman, T. Junginger, R.M.L. McFadden, J. Keir, D. Lang

- **CMMS Group:**

- **Life Science Group:**
 - V.L. Karner, M. Stachura

- **Laser Group:** R. Li

- **RIB Operation + RIB Operator**

- **Eng. Phys. Group:**
 - S. Saminathan, M. Marchetto

- **High Voltage Group:**
 - T. Hruskovec, J. Chow
Thank you
Merci

www.triumf.ca
Follow us @TRIUMFLab