

# beta-SRF Highlights

### **Edward Thoeng**

PhD Student – TRIUMF SRF Group/UBC

### Robert E. Laxdal

Head - TRIUMF SRF/RF Department Deputy Director – TRIUMF Accel. Division





# Outline

- Introduction/Motivation ullet
- **Beta-NMR** Technique  ${}^{\bullet}$
- **Results Highlights** ullet
- Summary & future outlook •





BRITISH COLUMBIA

# **SRF Cavities Performance**

- Ultimate Goal:
  - high Q → cheaper operation
  - high gradient → shorter LINAC
- Underlying mechanisms ?
  - Macroscopic performance very sensitive to surface treatment
  - Nonlinear field dependence (Q-slope, B<sub>quench</sub>)
- Empirical solutions:
  - Impurity engineering (baking, doping)
  - Thin film overlayer(s)



# **Nanometric Subsurface Role**

- <u>Achieving ideal performance</u>
  - Accel. Gradient limit:
    - Sustain Meissner phase to the limiting field (<u>B<sub>limit</sub></u>)
  - Screened magnetic fields within  $\lambda$
- How do the subsurface variations & modifications affect
  - Meissner limiting field: <u>B<sub>limit</sub></u> ?
  - Screening response: *\*<u>vs. treatment</u>?
  - Field dependence:  $\lambda$  vs.  $B_{app}$ ?





# **SRF Samples Characterization**

- Requirements:
  - local field within the London layer
  - depth-resolved (within ~ 100 nm): B(x)
  - ➢ up to B<sub>limit</sub> ~ 200 mT: B(x) vs B<sub>applied</sub>
- Radioactive spin-polarized ions
  - $\blacktriangleright$  ion implantation E  $\rightarrow$  nm-scale, depth-resolved
  - ➤ asymmetric radioactive decay → direct monitor of spin-polarization
  - $\blacktriangleright$  local field  $\rightarrow$  evolution of spin-polarization
- Two facilities at TRIUMF
  - HE-µSR: bulk probe (100 µm)
  - β-NMR: nm depth resolved (0 100 nm)

upgrade



### **β-SRF beamline:**

- high-parallel fields (200 mT)
- <u>nm-scale depth resolved</u>
- Iocal field measurements

# **βSRF** beamline

4-sector

Electrode

# beam

Deceleration

Gap

Ground

Anode

≤ 200 mT

### Main challenge

~ 1m

- Low energy (decelerated) ions in large stray fields  $\rightarrow$ strong (transverse) deflection
- Beam steering optics + diagnostics

≤ 24 mT

• Design + commissioning + first measurements:

*Rev Sci Instrum* 94, 023305 (2023)

# **The beta-SRF Experiments**

### **SAMPLES**

Two Nb samples measured: RRR Niobium

- "Baseline": `
  - 1400 °C annealing for 4 hours + BCP
- Custom treated with mid-T bake ("Oxygen doped"):
  - "Baseline" + 400°C for 3 hours
- Field screening with applied fields 100  $\rightarrow$  200 mT



### Sample ladder

### **LOCAL FIELD EXTRACTION**

7

### A) Relaxation Rate

### B) Average Field

### C) Local Field

# A) Spin-lattice relaxation rate

### 1. Depth-resolved:

- Varies implantation energies
- Energy ~ depth

### 2. Local field sensitivity:

- Probes spins depolarizes in sample → direct monitor β-decay
- > Char. depol. time = SLR rate  $1/T_1$
- Local B-field "slows-down" relaxation

$$\frac{1}{T_1} = \frac{a}{b+B^2}$$





### Slope = screening

# A) Spin-lattice relaxation rate data

<u>3. Increase B<sub>applied</sub>:</u>



# B) Mapping 1/T1 to Average Field $\langle B \rangle_E$



Applied to other fields – extract  $\tilde{\Lambda}(B_a)$ ,  $B_{surf}(B_a)$ 

# B) Average Field Results



# B) Average Field Results



# C) Local Field Analysis

### More refined analysis:

- > Directly average  $\langle 1/T_1 \rangle_E$  instead of  $\langle B \rangle_E$ 
  - individual ion relaxes with rate 1/T<sub>1</sub>(x)
  - > No E-mapping:  $\langle 1/T_1 \rangle_E \rightarrow \langle B \rangle_E$
- Map B(x) to 1/T<sub>1</sub>(x): more accurate modified Lorentzian L\* (different probe vs. Nb nuclear spins)
- Same B(x) model



# C) Local Field Analysis Results

$$\left\langle \frac{1}{T_1} \right\rangle_E = \int \rho_E(x) \, \mathcal{L}^* \, [\mathbf{B}(\mathbf{x})] \, dx$$









## **Results: Field-dependent Screening Penetration Depth (Λ)**



| B <sub>app</sub> | ۸<br>(Baseline) | ۸<br>(O-doped) |  |
|------------------|-----------------|----------------|--|
| (mT)             | (nm)            | (nm)           |  |
| 100              | 43              | 147 —          |  |
| 110              | 66              | 220            |  |
| 125              | 128             | 273            |  |
| 150              | 184             | 624            |  |
| -00              |                 |                |  |
| 700              |                 |                |  |

$$\lambda(0 K) = \lambda_L \sqrt{1 + \frac{\xi_0}{l}}$$



$$\begin{aligned} & \Lambda = \langle \lambda, n_v(x) \rangle \\ & \bullet \quad \lambda: \text{ Meissner} \\ & \bullet \quad n_v(x): \text{ Vortex} \end{aligned}$$

# **Results Highlights: Meissner Region**

### Flux entry detection via

- \* reduced surface enhancement  $B_{surf}$
- Define  $\chi$  [0,1], ~ flux free volume fraction :
  - $\circ \chi = 1$  (Meissner)
  - $\circ \chi < 1$  (mixed state)
  - $\circ$  X = 0 (vortex state)

### **Brandt's formulation:**







## Interesting Features: Strong Field Dependence (O-doped)

- > Meissner region @ B = 100-125 mT:
- $\succ$  Field dependence due to T<sub>c</sub>
  - $\hfill\square$  Two-fluid model:  $\lambda$  diverges at  $T_c$

$$\lambda(T) = \frac{\lambda(0)}{\sqrt{1 - (T/T_c)^4}},$$
$$T_c(B) = T_c(B = 0) \sqrt{\frac{1 - (B/B_{c2})}{1 + (B/B_{c2})}}$$







# **Interesting Features (2): Nonlinear Meissner Effect**

- □ Nonlinear Meissner Effect: additional increase due to quadratic field dependence  $\lambda(T,B) = \lambda(T,0) \left[ 1 + \beta \left( \frac{B_{surf}}{B_c} \right)^2 \right]$ 
  - from Ginzburg-Landau (GL) theory:
    - $\beta = \frac{\kappa(\kappa + 2^{3/2})}{8(\kappa + 2^{1/2})^2}$  [J. Makita, et al. Phys. Rev. Research41 013156 (2022)]
    - predicts  $\beta \sim 0.12$ . Best-fit at  $\beta \sim 3$ , prefactor 25x larger than GL
  - combined NLME + reduced Tc:
    - ★ if β<sub>max</sub> bounded to β = 1 + vary T<sub>c</sub>, best fit for T<sub>c</sub> ~ 7K due to e.g., O-concentration ~ 2 [at%] [C.C. Koch, et al. Phys. Rev. B 9, 888 (1974)]

18

Localized vortex

nucleation?



# **Summary & Future Outlook**

### Demonstrates β-SRF ability for:

- Clear differences in penetration depth between different treatment
- Clear evolution from Meissner state into mixed state
- Strong field dependence of penetration depth
- Proof of principle + potential to shed new light of SRF materials
- Details → manuscript in preparation

### **Recent studies:**

1. SIS multilayer: NbTiN/AIN/Nb:

- Md. Asaduzzaman + T. Junginger (Y. Kalboussi + T. Proslier, CEA Saclay)
- ♦ Measured at perp. field spectrometer (4.1 T)  $\rightarrow$  study vortex state
- ♦ Characterize suitable measurement conditions for β-SRF beamline ( $B_{//} \le 200 \text{ mT}$ )

### 2. Nb thin film + Nb oxide (Qubit): Fermilab SQMS + TRIUMF SRF/CMMS

## **Acknowledgement**

- SRF Group:
  - P. Kolb, Md. Asaduzzaman, T. Junginger, R.M.L. McFadden, J. Keir, D. Lang
- CMMS Group:
  - G.D.Morris, S.Dunsiger, J.Ticknor, W.A.MacFarlane, R.F.Kiefl
- Life Science Group:
  - V.L. Karner, M. Stachura
- Laser Group: R. Li
- RIB Operation + RIB Operator
- Eng. Phys. Group:
  - S. Saminathan, M. Marchetto
- High Voltage Group:
  - T. Hruskovec, J. Chow

# **∂** TRIUMF

# Thank you Merci

### www.triumf.ca

Follow us @TRIUMFLab





# Discovery, accelerated