Fermilab **BENERGY** Office of Science

Update on Traveling Wave Cavity Progress at Fermilab

- Presenter : Fumio Furuta
- TTC meeting
- December 6th, 2023

Contents

- Introduction
- TW SRF cavity development
- Recent progresses
- Summary

Introduction; Standing Wave and Traveling Wave

Illustrations of time-to-time accelerating field gradient profile in SW mode (Top, 9-cell structure) and TW mode (bottom, 16-cell structure). The points identify the amplitude of the field acting on the particle in sequential time-steps.

Motivations

- TW enables:
 - >20% increase in acceleration/cavity with higher transit time factor T (SW ~0.7, TW ~0.9^[1]).
 - >20% increase in acceleration/CM with longer cavities (more acceleration field).
- Overall 50% higher accelerating efficiency than SW structures is feasible.
- Cost reductions per TW regime rely on mature, industry-standard practices.
- Well-developed TW technology brings a range of exciting high-energy compact linear collider concepts within the realm of possibility.
- An example, the proposed TW-based linear collider HELEN ^[2] can achieve a 250 GeV center-ofmass energy in only 7.5 km, in stark contrast to the 30-km scale of the SW ILC structure.

[1] P. Avrakhov et al., "Traveling Wave Accelerating Structure for A Superconducting Accelerator", Proceedings of the PAC2005, pp. 4296-4298
[2] S. Belomestnykh et al., "Superconducting radio frequency linear collider HELEN," JINST 18, P09039 (2023)

Se Fermilab

TW SRF cavity development

Conceptual design

Superconducting Traveling-Wave accelerating structure with feedback waveguide to circulating RF power from the structure output to the structure input.

Feasibility study

a single-cell cavity w/ feedback waveguide to demonstrate high gradient operation and conduct RF field measurements.

A proof-of-principle

- 3-cell TW cavity and a special tuner fabricated
- Demonstrated TW excitation at room temp.

The 1st cold test to demonstrate TW resonance excitation in 2K liquid is ongoing at IB1 VTS.

New Project

FY23 US-Japan "Developing high-gradient traveling wave SRF accelerating cavity" in collaboration between KEK-Jlab-FNAL is awarded for 1-year which focuses on EBW optimization for the iris joint within the narrow gap.

Conceptual design by Pavel Avrakhov

¹⁻cell w/ WG

The early stages of the 3-cell developments had been funded by SBIR grant to Euclid Techlabs (DOE SBIR Grant # DE-SC0006300).

RF feed and measurement scheme for the 3-Cell TW cavity

Three monitoring couplers

- Forward wave signal
- Calibration signal
- Backward wave signal

🛟 Fermilab

6 12/9/23

RF feed and measurement scheme for the 3-Cell TW^[3] 1 –Vector Network Analyzer (VNA);

- 2 power amplifier;
- 3 matched load;
- 4 3dB hybrid;
- 5 phase shifter;
- 6 circulator;
- 7 resonator

[3] R. Kostin et al. "Progress towards 3-cell super-conducting traveling wave cavity cryogenic test," Journal of Physics: Conf. Series 941 (2017) 012100

Special tuner (Matcher) for the 3-cell TW cavity

- designed and fabricated to compensate Lorentz force and maintain the TW resonance at 2 K VTS conditions.
- will deform the waveguide wall and decouple partial modes to compensate the Lorentz force.
- The preliminary test on the matcher test assembly at room and liquid nitrogen temperatures indicated the feasibility of achieving TW resonance in 2 K.

Matcher for the 3-cell tested in liq. N2 temp [4]

Model of the 3-cell with one Matcher.

Assembly test

[4] R. Kostin et al., "A tuner for a superconducting traveling wave cavity prototype," Journal of Instrumentation 10.10 (2015): P10038

7 12/9/23 F. Furuta | Update on Traveling Wave Cavity Progress at Fermilab

TW 3-cell VTS preparations

BCP at ANL

12/9/23

8

FCHI ABS

HPR at IB4, FNAL

VTS instrumentations

Tuning hardware on the 3-cell and the field profiles (SW mode) post tuning.

F. Furuta | Update on Traveling Wave Cavity Progress at Fermilab

TW demonstration; Cavity with air, room temp. at RF test bench

The 3-cell on RF test bench

An example of TW at 1301.06 MHz excited at room temperature after cell tuning

• Magenta; a forward wave signal

12/9/23

- Blue; a suppressed backward wave signal (~30dB less than forward)
- Yellow; a signal from the calibration pick up.

TW demonstration; Cavity under vacuum, at room temp. in VTS

An example of TW at 1301.100 MHz excited at room temperature

• Yellow; a forward wave signal

10

12/9/23

- Blue; a suppressed backward wave signal (~30dB less than forward)
- Purple; a signal from the calibration pick up.

The 3-cell installation into VTS pit

TW demonstration; Cavity under vacuum, in 2K liquid helium, VTS

Top plate in VTS pit with TW test arrange.

An example of TW at 1303.155 MHz being tuned at 2K

• Yellow; a forward wave signal

12/9/23

- Blue; a suppressed backward wave signal (>30dB less than forward)
- Purple; a signal from the calibration pick up.

Summary

- SRF TW cavity development through the 3-cell has been progressing at Fermilab in collaboration with Euclid Techlabs.
- Preliminary TW resonance excitation in the 3-cell structure in 2K liquid helium was demonstrated.
- More hardware improvements and TW study with the 3-cell will be continued at Fermilab.
- Next stage of development toward a half-meter scale TW cavity fabrication has been discussing.

5 Fermilab

• A preliminary 7-cell TW cavity RF design and configurations being proposed in Fermilab (not presented during this TTC).

Acknowledgment

Thank to all colleagues supported the 3-cell TW works!!

Co-PIs

- Kellen McGee
- Vyacheslav Yakovlev

- Roman Kostin
- Pavel Avrakhov

Engineering Consultant

• John Rathke

RF support

- Timergali Khabiboulline
- Gennady Romanov

Cavity support

- Damon Bice
- Chad Thompson
- Thomas Reid
- Ben Guilfoyle

VTS support

- Alexandr Netepenko
- Abraham Diaz
- David Burk
- Paul Dubiel
- Man Kwan (Trista) Ng

Cryo support

• Dan Marks

and more,,,

Appendix; 3-cell TW cavity inner cell shape

Parameter	105°
Aperture (mm)	60
d (mm)	33.63
a (mm)	5.3
b (mm)	7.69
R (mm)	100.21
B (mm)	38.5
KE	1.939
KH (mT/MV/m)	3.054
KE_{STWA} / KE_{Reentrant}	0.8079
KH _{STWA} / KH _{Reentrant}	0.8079
Acc. rate _{STWA} / Acc. rate _{Reentrant}	1.2378

The cell shape has been optimized to reach the maximum accelerating gradient while keeping the magnitude of surface magnetic and electric fields less than the experimentally verified limits.

105° phase advance

24 % gradient gain

